\n",
" 🔑 Note: To generate proteins with Chroma, you'll need an API key from chroma-weights.generatebiomedicines.com. Execute the cell below and enter your key after accepting the license.\n",
"
\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c6db90e2",
"metadata": {
"id": "c6db90e2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"import locale\n",
"locale.getpreferredencoding = lambda: \"UTF-8\"\n",
"%pip install generate-chroma > /dev/null 2>&1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f15f2198",
"metadata": {
"id": "f15f2198"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f8e1ed8ac9014799ad87d5e27c84b5c3",
"version_major": 2,
"version_minor": 0
},
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import torch\n",
"from chroma import Chroma, Protein, conditioners, api\n",
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"api.register_key(input(\"2cdade6d058b4fd1b85fa5badb501312\"))"
]
},
{
"cell_type": "markdown",
"id": "f46c2848",
"metadata": {
"id": "f46c2848"
},
"source": [
"To generate protein samples with Chroma, initialize the model and call the sample method. The sample method generates a protein backbone, designs a sequence, and returns a `Protein` object."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9728242e",
"metadata": {
"id": "9728242e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using cached data from /tmp/chroma_weights/90e339502ae6b372797414167ce5a632/weights.pt\n",
"Loaded from cache\n",
"Using cached data from /tmp/chroma_weights/03a3a9af343ae74998768a2711c8b7ce/weights.pt\n",
"Loaded from cache\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d52be95afc3b4846a21ef28ccae8729b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Integrating SDE: 0%| | 0/500 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "RuntimeError",
"evalue": "CUDA out of memory. Tried to allocate 30.00 MiB (GPU 0; 23.69 GiB total capacity; 127.36 MiB already allocated; 13.19 MiB free; 140.00 MiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[3], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m chroma \u001b[38;5;241m=\u001b[39m Chroma()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Sample a Protein\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m protein \u001b[38;5;241m=\u001b[39m \u001b[43mchroma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/chroma.py:229\u001b[0m, in \u001b[0;36mChroma.sample\u001b[0;34m(self, samples, steps, chain_lengths, tspan, protein_init, conditioner, langevin_factor, langevin_isothermal, inverse_temperature, initialize_noise, integrate_func, sde_func, trajectory_length, full_output, design_ban_S, design_method, design_selection, design_t, temperature_S, temperature_chi, top_p_S, regularization, potts_mcmc_depth, potts_proposal, potts_symmetry_order, verbose)\u001b[0m\n\u001b[1;32m 226\u001b[0m design_kwargs \u001b[38;5;241m=\u001b[39m {k: input_args[k] \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m input_args \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m design_keys}\n\u001b[1;32m 228\u001b[0m \u001b[38;5;66;03m# Perform Sampling\u001b[39;00m\n\u001b[0;32m--> 229\u001b[0m sample_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sample\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mbackbone_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 231\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m full_output:\n\u001b[1;32m 232\u001b[0m protein_sample, output_dictionary \u001b[38;5;241m=\u001b[39m sample_output\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/chroma.py:355\u001b[0m, in \u001b[0;36mChroma._sample\u001b[0;34m(self, samples, steps, chain_lengths, tspan, protein_init, conditioner, langevin_factor, langevin_isothermal, inverse_temperature, initialize_noise, integrate_func, sde_func, trajectory_length, full_output, **kwargs)\u001b[0m\n\u001b[1;32m 352\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 353\u001b[0m X_unc, C_unc, S_unc \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_init_backbones(samples, chain_lengths)\n\u001b[0;32m--> 355\u001b[0m outs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackbone_network\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample_sde\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 356\u001b[0m \u001b[43m \u001b[49m\u001b[43mC_unc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 357\u001b[0m \u001b[43m \u001b[49m\u001b[43mX_init\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mX_unc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 358\u001b[0m \u001b[43m \u001b[49m\u001b[43mconditioner\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconditioner\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 359\u001b[0m \u001b[43m \u001b[49m\u001b[43mtspan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtspan\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 360\u001b[0m \u001b[43m \u001b[49m\u001b[43mlangevin_isothermal\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlangevin_isothermal\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 361\u001b[0m \u001b[43m \u001b[49m\u001b[43mintegrate_func\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mintegrate_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 362\u001b[0m \u001b[43m \u001b[49m\u001b[43msde_func\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msde_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 363\u001b[0m \u001b[43m \u001b[49m\u001b[43mlangevin_factor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlangevin_factor\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 364\u001b[0m \u001b[43m \u001b[49m\u001b[43minverse_temperature\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minverse_temperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 365\u001b[0m \u001b[43m \u001b[49m\u001b[43mN\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msteps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 366\u001b[0m \u001b[43m \u001b[49m\u001b[43minitialize_noise\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitialize_noise\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 367\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 368\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m S_unc\u001b[38;5;241m.\u001b[39mshape \u001b[38;5;241m!=\u001b[39m outs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mC\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mshape:\n\u001b[1;32m 371\u001b[0m S \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mzeros_like(outs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mC\u001b[39m\u001b[38;5;124m\"\u001b[39m])\u001b[38;5;241m.\u001b[39mlong()\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/graph_backbone.py:187\u001b[0m, in \u001b[0;36mGraphBackbone.__init__..\u001b[0;34m(C, **kwargs)\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[38;5;66;03m# Wrap sampling functions\u001b[39;00m\n\u001b[1;32m 186\u001b[0m _X0_func \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m X, C, t: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdenoise(X, C, t)\n\u001b[0;32m--> 187\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msample_sde \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnoise_perturb\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample_sde\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 188\u001b[0m \u001b[43m \u001b[49m\u001b[43m_X0_func\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 189\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 190\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msample_baoab \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39msample_baoab(\n\u001b[1;32m 191\u001b[0m _X0_func, C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 192\u001b[0m )\n\u001b[1;32m 193\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msample_ode \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39msample_ode(\n\u001b[1;32m 194\u001b[0m _X0_func, C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 195\u001b[0m )\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/torch/autograd/grad_mode.py:28\u001b[0m, in \u001b[0;36m_DecoratorContextManager.__call__..decorate_context\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 26\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdecorate_context\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m():\n\u001b[0;32m---> 28\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/diffusion.py:1213\u001b[0m, in \u001b[0;36mDiffusionChainCov.sample_sde\u001b[0;34m(self, X0_func, C, X_init, conditioner, N, tspan, inverse_temperature, langevin_factor, langevin_isothermal, sde_func, integrate_func, initialize_noise, remap_time, remove_drift_translate, remove_noise_translate, align_X0)\u001b[0m\n\u001b[1;32m 1210\u001b[0m Ct \u001b[38;5;241m=\u001b[39m C\n\u001b[1;32m 1212\u001b[0m \u001b[38;5;66;03m# Integrate\u001b[39;00m\n\u001b[0;32m-> 1213\u001b[0m X_trajectory \u001b[38;5;241m=\u001b[39m \u001b[43mintegrate_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43msdefun\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX_init\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtspan\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mN\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mT_grid\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mT_grid\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1215\u001b[0m \u001b[38;5;66;03m# Return constrained coordinates\u001b[39;00m\n\u001b[1;32m 1216\u001b[0m outputs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 1217\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mC\u001b[39m\u001b[38;5;124m\"\u001b[39m: Ct,\n\u001b[1;32m 1218\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mX_sample\u001b[39m\u001b[38;5;124m\"\u001b[39m: Xt_trajectory[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1221\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mXunc_trajectory\u001b[39m\u001b[38;5;124m\"\u001b[39m: X_trajectory,\n\u001b[1;32m 1222\u001b[0m }\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/sde.py:64\u001b[0m, in \u001b[0;36msde_integrate\u001b[0;34m(sde_func, y0, tspan, N, project_func, T_grid)\u001b[0m\n\u001b[1;32m 61\u001b[0m t \u001b[38;5;241m=\u001b[39m t0\n\u001b[1;32m 62\u001b[0m dT \u001b[38;5;241m=\u001b[39m t1 \u001b[38;5;241m-\u001b[39m t0\n\u001b[0;32m---> 64\u001b[0m f, gZ \u001b[38;5;241m=\u001b[39m \u001b[43msde_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 65\u001b[0m y \u001b[38;5;241m=\u001b[39m y \u001b[38;5;241m+\u001b[39m dT \u001b[38;5;241m*\u001b[39m f \u001b[38;5;241m+\u001b[39m dT\u001b[38;5;241m.\u001b[39mabs()\u001b[38;5;241m.\u001b[39msqrt() \u001b[38;5;241m*\u001b[39m gZ\n\u001b[1;32m 66\u001b[0m y \u001b[38;5;241m=\u001b[39m y \u001b[38;5;28;01mif\u001b[39;00m project_func \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m project_func(t, y)\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/diffusion.py:1174\u001b[0m, in \u001b[0;36mDiffusionChainCov.sample_sde..sdefun\u001b[0;34m(_t, _X)\u001b[0m\n\u001b[1;32m 1173\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msdefun\u001b[39m(_t, _X):\n\u001b[0;32m-> 1174\u001b[0m f, gZ \u001b[38;5;241m=\u001b[39m \u001b[43msde_func\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1175\u001b[0m \u001b[43m \u001b[49m\u001b[43m_X\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1176\u001b[0m \u001b[43m \u001b[49m\u001b[43m_X0_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1177\u001b[0m \u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1178\u001b[0m \u001b[43m \u001b[49m\u001b[43m_t\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1179\u001b[0m \u001b[43m \u001b[49m\u001b[43mconditioner\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconditioner\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1180\u001b[0m \u001b[43m \u001b[49m\u001b[43minverse_temperature\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minverse_temperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1181\u001b[0m \u001b[43m \u001b[49m\u001b[43mlangevin_factor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlangevin_factor\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1182\u001b[0m \u001b[43m \u001b[49m\u001b[43mlangevin_isothermal\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlangevin_isothermal\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1183\u001b[0m \u001b[43m \u001b[49m\u001b[43malign_X0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43malign_X0\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1184\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1185\u001b[0m \u001b[38;5;66;03m# Remove net translational component\u001b[39;00m\n\u001b[1;32m 1186\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m remove_drift_translate:\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/data/xcs.py:114\u001b[0m, in \u001b[0;36mvalidate_XCS..decorator..new_func\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mallclose(tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39margmax(dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m), tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS\u001b[39m\u001b[38;5;124m\"\u001b[39m]):\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS and O are both provided but don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/diffusion.py:785\u001b[0m, in \u001b[0;36mDiffusionChainCov.reverse_sde\u001b[0;34m(self, X, X0_func, C, t, conditioner, Z, inverse_temperature, langevin_factor, langevin_isothermal, align_X0)\u001b[0m\n\u001b[1;32m 782\u001b[0m Z \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mrandn_like(X) \u001b[38;5;28;01mif\u001b[39;00m Z \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m Z\n\u001b[1;32m 784\u001b[0m \u001b[38;5;66;03m# X = backbone.center_X(X, C)\u001b[39;00m\n\u001b[0;32m--> 785\u001b[0m score \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscore\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX0_func\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconditioner\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43malign_X0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43malign_X0\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 786\u001b[0m score_transformed \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbase_gaussian\u001b[38;5;241m.\u001b[39mmultiply_covariance(score, C)\n\u001b[1;32m 788\u001b[0m f \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 789\u001b[0m beta \u001b[38;5;241m*\u001b[39m (\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m2\u001b[39m) \u001b[38;5;241m*\u001b[39m backbone\u001b[38;5;241m.\u001b[39mcenter_X(X, C)\n\u001b[1;32m 790\u001b[0m \u001b[38;5;241m-\u001b[39m g\u001b[38;5;241m.\u001b[39mpow(\u001b[38;5;241m2\u001b[39m) \u001b[38;5;241m*\u001b[39m score_scale_t \u001b[38;5;241m*\u001b[39m score_transformed\n\u001b[1;32m 791\u001b[0m )\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/data/xcs.py:114\u001b[0m, in \u001b[0;36mvalidate_XCS..decorator..new_func\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mallclose(tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39margmax(dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m), tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS\u001b[39m\u001b[38;5;124m\"\u001b[39m]):\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS and O are both provided but don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/diffusion.py:952\u001b[0m, in \u001b[0;36mDiffusionChainCov.score\u001b[0;34m(self, X, X0_func, C, t, conditioner, detach_X0, align_X0, U_traj)\u001b[0m\n\u001b[1;32m 949\u001b[0m U_conditioner \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mas_tensor(U_conditioner)\n\u001b[1;32m 951\u001b[0m \u001b[38;5;66;03m# Compute system energy\u001b[39;00m\n\u001b[0;32m--> 952\u001b[0m U_diffusion \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43menergy\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 953\u001b[0m \u001b[43m \u001b[49m\u001b[43mXt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX0_func\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mCt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdetach_X0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdetach_X0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43malign_X0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43malign_X0\u001b[49m\n\u001b[1;32m 954\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 956\u001b[0m U_traj\u001b[38;5;241m.\u001b[39mappend(U_diffusion\u001b[38;5;241m.\u001b[39mdetach()\u001b[38;5;241m.\u001b[39mcpu())\n\u001b[1;32m 958\u001b[0m \u001b[38;5;66;03m# Compute score function as negative energy gradient\u001b[39;00m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/data/xcs.py:114\u001b[0m, in \u001b[0;36mvalidate_XCS..decorator..new_func\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mallclose(tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39margmax(dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m), tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS\u001b[39m\u001b[38;5;124m\"\u001b[39m]):\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS and O are both provided but don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/diffusion.py:892\u001b[0m, in \u001b[0;36mDiffusionChainCov.energy\u001b[0;34m(self, X, X0_func, C, t, detach_X0, align_X0)\u001b[0m\n\u001b[1;32m 890\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m detach_X0:\n\u001b[1;32m 891\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m--> 892\u001b[0m X0 \u001b[38;5;241m=\u001b[39m \u001b[43mX0_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 893\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 894\u001b[0m X0 \u001b[38;5;241m=\u001b[39m X0_func(X, C, t\u001b[38;5;241m=\u001b[39mt)\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/diffusion.py:1168\u001b[0m, in \u001b[0;36mDiffusionChainCov.sample_sde.._X0_func\u001b[0;34m(_X, _C, t)\u001b[0m\n\u001b[1;32m 1167\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_X0_func\u001b[39m(_X, _C, t):\n\u001b[0;32m-> 1168\u001b[0m _X0 \u001b[38;5;241m=\u001b[39m \u001b[43mX0_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_X\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_C\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1169\u001b[0m Xt_trajectory\u001b[38;5;241m.\u001b[39mappend(_X\u001b[38;5;241m.\u001b[39mdetach())\n\u001b[1;32m 1170\u001b[0m Xhat_trajectory\u001b[38;5;241m.\u001b[39mappend(_X0\u001b[38;5;241m.\u001b[39mdetach())\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/graph_backbone.py:186\u001b[0m, in \u001b[0;36mGraphBackbone.__init__..\u001b[0;34m(X, C, t)\u001b[0m\n\u001b[1;32m 181\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmlp_W \u001b[38;5;241m=\u001b[39m graph\u001b[38;5;241m.\u001b[39mMLP(\n\u001b[1;32m 182\u001b[0m dim_in\u001b[38;5;241m=\u001b[39margs\u001b[38;5;241m.\u001b[39mdim_nodes, num_layers_hidden\u001b[38;5;241m=\u001b[39margs\u001b[38;5;241m.\u001b[39mnode_mlp_layers, dim_out\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 183\u001b[0m )\n\u001b[1;32m 185\u001b[0m \u001b[38;5;66;03m# Wrap sampling functions\u001b[39;00m\n\u001b[0;32m--> 186\u001b[0m _X0_func \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m X, C, t: \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdenoise\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 187\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msample_sde \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39msample_sde(\n\u001b[1;32m 188\u001b[0m _X0_func, C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 189\u001b[0m )\n\u001b[1;32m 190\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msample_baoab \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnoise_perturb\u001b[38;5;241m.\u001b[39msample_baoab(\n\u001b[1;32m 191\u001b[0m _X0_func, C, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 192\u001b[0m )\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/data/xcs.py:114\u001b[0m, in \u001b[0;36mvalidate_XCS..decorator..new_func\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mallclose(tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39margmax(dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m), tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS\u001b[39m\u001b[38;5;124m\"\u001b[39m]):\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS and O are both provided but don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/graph_backbone.py:239\u001b[0m, in \u001b[0;36mGraphBackbone.denoise\u001b[0;34m(self, X, C, t, return_geometry)\u001b[0m\n\u001b[1;32m 235\u001b[0m X_update \u001b[38;5;241m=\u001b[39m X\n\u001b[1;32m 237\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnum_graph_cycles):\n\u001b[1;32m 238\u001b[0m \u001b[38;5;66;03m# Encode as graph\u001b[39;00m\n\u001b[0;32m--> 239\u001b[0m node_h, edge_h, edge_idx, mask_i, mask_ij \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoders\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 240\u001b[0m \u001b[43m \u001b[49m\u001b[43mX_update\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 241\u001b[0m \u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 242\u001b[0m \u001b[43m \u001b[49m\u001b[43mnode_h_aux\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnode_h\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 243\u001b[0m \u001b[43m \u001b[49m\u001b[43medge_h_aux\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43medge_h\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 244\u001b[0m \u001b[43m \u001b[49m\u001b[43medge_idx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43medge_idx\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 245\u001b[0m \u001b[43m \u001b[49m\u001b[43mmask_ij\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmask_ij\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 246\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 247\u001b[0m \u001b[38;5;66;03m# Update backbone\u001b[39;00m\n\u001b[1;32m 248\u001b[0m X_update, R_ji, t_ji, logit_ji \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbackbone_updates[i](\n\u001b[1;32m 249\u001b[0m X_update, C, node_h, edge_h, edge_idx, mask_i, mask_ij\n\u001b[1;32m 250\u001b[0m )\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/torch/nn/modules/module.py:1102\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1099\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1101\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1103\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1104\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/data/xcs.py:114\u001b[0m, in \u001b[0;36mvalidate_XCS..decorator..new_func\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mallclose(tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mO\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39margmax(dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m), tensors[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS\u001b[39m\u001b[38;5;124m\"\u001b[39m]):\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mS and O are both provided but don\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt match!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/graph_design.py:1237\u001b[0m, in \u001b[0;36mBackboneEncoderGNN.forward\u001b[0;34m(self, X, C, node_h_aux, edge_h_aux, edge_idx, mask_ij)\u001b[0m\n\u001b[1;32m 1234\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcheckpoint_gradients \u001b[38;5;129;01mand\u001b[39;00m (\u001b[38;5;129;01mnot\u001b[39;00m X\u001b[38;5;241m.\u001b[39mrequires_grad):\n\u001b[1;32m 1235\u001b[0m X\u001b[38;5;241m.\u001b[39mrequires_grad \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m-> 1237\u001b[0m node_h, edge_h, edge_idx, mask_i, mask_ij \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_checkpoint\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1238\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeature_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43medge_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmask_ij\u001b[49m\n\u001b[1;32m 1239\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1241\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m node_h_aux \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1242\u001b[0m node_h \u001b[38;5;241m=\u001b[39m node_h \u001b[38;5;241m+\u001b[39m mask_i\u001b[38;5;241m.\u001b[39munsqueeze(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m) \u001b[38;5;241m*\u001b[39m node_h_aux\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/graph_design.py:1251\u001b[0m, in \u001b[0;36mBackboneEncoderGNN._checkpoint\u001b[0;34m(self, module, *args)\u001b[0m\n\u001b[1;32m 1249\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_checkpoint\u001b[39m(\u001b[38;5;28mself\u001b[39m, module: nn\u001b[38;5;241m.\u001b[39mModule, \u001b[38;5;241m*\u001b[39margs) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m nn\u001b[38;5;241m.\u001b[39mModule:\n\u001b[1;32m 1250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcheckpoint_gradients:\n\u001b[0;32m-> 1251\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mcheckpoint\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1252\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1253\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m module(\u001b[38;5;241m*\u001b[39margs)\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/torch/utils/checkpoint.py:211\u001b[0m, in \u001b[0;36mcheckpoint\u001b[0;34m(function, *args, **kwargs)\u001b[0m\n\u001b[1;32m 208\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs:\n\u001b[1;32m 209\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnexpected keyword arguments: \u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m,\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(arg \u001b[38;5;28;01mfor\u001b[39;00m arg \u001b[38;5;129;01min\u001b[39;00m kwargs))\n\u001b[0;32m--> 211\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mCheckpointFunction\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunction\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpreserve\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/torch/utils/checkpoint.py:90\u001b[0m, in \u001b[0;36mCheckpointFunction.forward\u001b[0;34m(ctx, run_function, preserve_rng_state, *args)\u001b[0m\n\u001b[1;32m 87\u001b[0m ctx\u001b[38;5;241m.\u001b[39msave_for_backward(\u001b[38;5;241m*\u001b[39mtensor_inputs)\n\u001b[1;32m 89\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m---> 90\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[43mrun_function\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 91\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m outputs\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/torch/nn/modules/module.py:1102\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1099\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1101\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1103\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1104\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/protein_graph.py:232\u001b[0m, in \u001b[0;36mProteinFeatureGraph.forward\u001b[0;34m(self, X, C, edge_idx, mask_ij, custom_D, custom_mask_2D)\u001b[0m\n\u001b[1;32m 230\u001b[0m edge_h \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 231\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, layer \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39medge_layers):\n\u001b[0;32m--> 232\u001b[0m edge_h_l \u001b[38;5;241m=\u001b[39m \u001b[43mlayer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43medge_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mC\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 233\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcentered:\n\u001b[1;32m 234\u001b[0m edge_h_l \u001b[38;5;241m=\u001b[39m edge_h_l \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__getattr__\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124medge_means_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/torch/nn/modules/module.py:1102\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1099\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1101\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1103\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1104\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/protein_graph.py:988\u001b[0m, in \u001b[0;36mEdgeDistance2mer.forward\u001b[0;34m(self, X, edge_idx, C)\u001b[0m\n\u001b[1;32m 986\u001b[0m shape_flat \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(D_ij\u001b[38;5;241m.\u001b[39mshape[:\u001b[38;5;241m3\u001b[39m]) \u001b[38;5;241m+\u001b[39m [\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 987\u001b[0m D_ij \u001b[38;5;241m=\u001b[39m D_ij\u001b[38;5;241m.\u001b[39mreshape(shape_flat)\n\u001b[0;32m--> 988\u001b[0m feature_ij \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeaturize\u001b[49m\u001b[43m(\u001b[49m\u001b[43mD_ij\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 990\u001b[0m \u001b[38;5;66;03m# DEBGUG\u001b[39;00m\n\u001b[1;32m 991\u001b[0m \u001b[38;5;66;03m# _debug_plot_edges(edge_idx, feature_ij, unravel=True)\u001b[39;00m\n\u001b[1;32m 992\u001b[0m \u001b[38;5;66;03m# exit(0)\u001b[39;00m\n\u001b[1;32m 993\u001b[0m edge_h \u001b[38;5;241m=\u001b[39m mask_ij \u001b[38;5;241m*\u001b[39m feature_ij\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/protein_graph.py:973\u001b[0m, in \u001b[0;36mEdgeDistance2mer.featurize\u001b[0;34m(self, D)\u001b[0m\n\u001b[1;32m 971\u001b[0m h_list \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 972\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m feature \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfeatures:\n\u001b[0;32m--> 973\u001b[0m h \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeature_funcs\u001b[49m\u001b[43m[\u001b[49m\u001b[43mfeature\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[43mD\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 974\u001b[0m h_list\u001b[38;5;241m.\u001b[39mappend(h)\n\u001b[1;32m 975\u001b[0m h \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mcat(h_list, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/protein_graph.py:967\u001b[0m, in \u001b[0;36mEdgeDistance2mer.__init__..\u001b[0;34m(D)\u001b[0m\n\u001b[1;32m 960\u001b[0m \u001b[38;5;66;03m# Public attribute\u001b[39;00m\n\u001b[1;32m 961\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdim_out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msum\u001b[39m([feature_dims[d] \u001b[38;5;28;01mfor\u001b[39;00m d \u001b[38;5;129;01min\u001b[39;00m features])\n\u001b[1;32m 963\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfeature_funcs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 964\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlog\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28;01mlambda\u001b[39;00m D: torch\u001b[38;5;241m.\u001b[39mlog(D \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdistance_eps),\n\u001b[1;32m 965\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124minverse\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28;01mlambda\u001b[39;00m D: \u001b[38;5;241m1.0\u001b[39m \u001b[38;5;241m/\u001b[39m (D \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdistance_eps),\n\u001b[1;32m 966\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraw\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28;01mlambda\u001b[39;00m D: D,\n\u001b[0;32m--> 967\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrbf\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28;01mlambda\u001b[39;00m D: \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrbf_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43mD\u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 968\u001b[0m }\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/torch/nn/modules/module.py:1102\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1099\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1101\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1103\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1104\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/layers/structure/protein_graph.py:1439\u001b[0m, in \u001b[0;36mRBFExpansion.forward\u001b[0;34m(self, h)\u001b[0m\n\u001b[1;32m 1437\u001b[0m shape_ones \u001b[38;5;241m=\u001b[39m [\u001b[38;5;241m1\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m _ \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(shape))] \u001b[38;5;241m+\u001b[39m [\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 1438\u001b[0m rbf_centers \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrbf_centers\u001b[38;5;241m.\u001b[39mview(shape_ones)\n\u001b[0;32m-> 1439\u001b[0m h \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mexp(\u001b[38;5;241m-\u001b[39m(((\u001b[43mh\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munsqueeze\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mrbf_centers\u001b[49m) \u001b[38;5;241m/\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstd) \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m \u001b[38;5;241m2\u001b[39m))\n\u001b[1;32m 1440\u001b[0m h \u001b[38;5;241m=\u001b[39m h\u001b[38;5;241m.\u001b[39mview(shape[:\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m+\u001b[39m [\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m 1441\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m h\n",
"\u001b[0;31mRuntimeError\u001b[0m: CUDA out of memory. Tried to allocate 30.00 MiB (GPU 0; 23.69 GiB total capacity; 127.36 MiB already allocated; 13.19 MiB free; 140.00 MiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF"
]
}
],
"source": [
"# Initialize the Model\n",
"chroma = Chroma()\n",
"\n",
"# Sample a Protein\n",
"protein = chroma.sample()"
]
},
{
"cell_type": "markdown",
"id": "95f44aa7",
"metadata": {
"id": "95f44aa7"
},
"source": [
"The `Protein` object enables one line inspection, saving, and loading of proteins."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd620ec7",
"metadata": {
"id": "cd620ec7"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Protein: system\n",
"> Chain A (100 residues)\n",
"MKSIEEKLKEIIDKAKELGCDDCANRLKQVLDEIKRNKENKCEAYKKAIDALKSIVDELERRAQELASRDPELGKQAREQVENIKKEIDELIKEIKKSCA\n",
"\n",
"\n"
]
}
],
"source": [
"print(protein) # Inspect the sequence of the protein sample\n",
"protein.to('chroma_sample.cif') # Save the sample to disk\n",
"protein = Protein('chroma_sample.cif') # Load a protein from disk"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "93c6ea6b",
"metadata": {
"id": "93c6ea6b"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "136cf83c3a85456ab08156c857b5f64e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"NGLWidget()"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(protein)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab969fef",
"metadata": {
"id": "ab969fef"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47fc2f8daa9742de98ced4285e0164d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Integrating diffusion metrics: 0%| | 0/50 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "TypeError",
"evalue": "unsupported operand type(s) for |: 'dict' and 'dict'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[5], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Calculate sample scores\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m elbo \u001b[38;5;241m=\u001b[39m \u001b[43mchroma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscore\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprotein\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124melbo\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mscore\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msample elbo: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00melbo\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n",
"File \u001b[0;32m~/anaconda3/envs/mlfold/lib/python3.8/site-packages/chroma/models/chroma.py:722\u001b[0m, in \u001b[0;36mChroma.score\u001b[0;34m(self, proteins, num_samples, tspan)\u001b[0m\n\u001b[1;32m 720\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 721\u001b[0m sequence_scores[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mt_seq\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m sequence_scores\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mt\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 722\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mbackbone_scores\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m|\u001b[39;49m\u001b[43m \u001b[49m\u001b[43msequence_scores\u001b[49m\n",
"\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for |: 'dict' and 'dict'"
]
}
],
"source": [
"# Calculate sample scores\n",
"elbo = chroma.score(protein)['elbo'].score\n",
"print(f'sample elbo: {elbo}')"
]
},
{
"cell_type": "markdown",
"id": "06688f25",
"metadata": {
"id": "06688f25"
},
"source": [
"---"
]
},
{
"cell_type": "markdown",
"id": "1be29dbb",
"metadata": {
"id": "1be29dbb",
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Conditioning"
]
},
{
"cell_type": "markdown",
"id": "26d19c04",
"metadata": {
"id": "26d19c04"
},
"source": [
"Chroma conditioners allow us to program proteins. In the following examples we will show conditional generation for `Infilling`, `Symmetry`, `Shape`, `Protein Classes`, and `Natural Language`."
]
},
{
"cell_type": "markdown",
"id": "baf8ed65",
"metadata": {
"id": "baf8ed65",
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Symmetry\n",
"\n",
"Chroma can generate symmetric proteins with the help of the symmetry conditioner. We demonstrate a minimal example of conditioning on the cyclic point group with a 7-fold rotation axis. This point group has 7 asymmetric units arranged in a circle. The subunits are of size 50 in this example. The following parameters can be adjusted below:\n",
"\n",
"* `SYMMETRY_GROUP`: symmetry group, choose from {'C_2', 'C_3', ..., \"D_2\", \"D_3\", ..., \"T\", \"O\", \"I\"}\n",
"* `SUBUNIT_SIZES`: chain lengths for asymmetric unit: e.g [100], [100, 150], more than one chain is allowed for the asymmetric unit\n",
"* `KNBR`: number of neighbors to pay attention to during sampling. max allowed is total number of asymetric units in the protein complex - 1.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e060bd9",
"metadata": {
"id": "4e060bd9",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"SYMMETRY_GROUP = \"C_7\"\n",
"SUBUNIT_SIZES = [100]\n",
"KNBR = 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "87903f39",
"metadata": {
"id": "87903f39",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Draw a Sample\n",
"torch.manual_seed(0)\n",
"conditioner = conditioners.SymmetryConditioner(G=SYMMETRY_GROUP, num_chain_neighbors=KNBR)\n",
"symmetric_protein = chroma.sample(\n",
" chain_lengths=SUBUNIT_SIZES,\n",
" conditioner=conditioner,\n",
" langevin_factor=8,\n",
" inverse_temperature=8,\n",
" sde_func=\"langevin\",\n",
" potts_symmetry_order=conditioner.potts_symmetry_order)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f5d7eef",
"metadata": {
"id": "2f5d7eef",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"display(symmetric_protein)"
]
},
{
"cell_type": "markdown",
"id": "20bcee17",
"metadata": {
"id": "20bcee17",
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Infilling\n",
"\n",
"Many protein design tasks including imputation of missing structural data, redesign of an enzyme scaffold given an active site, or redesign of the CDRs of a known antibody framework require exact specification of the known structural coordinates. The substructure conditioner enables this type of design. By specifiying the set of residues that are designable, and a protein to redesign, the user can perform infilling. In this example, a plane split is used which cuts a protein into two portions, a designable portion and a fixed portion. The following parameters can be set by the user:\n",
"\n",
"* `MASK_FRACTION`: the fraction of the protein to redesign.\n",
"* `PDB_ID`: The pdb to use for a infilling. There are also a set of `TESTED_PDBS` that you can use as examples."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f2478d5",
"metadata": {
"id": "4f2478d5"
},
"outputs": [],
"source": [
"TESTED_PDBS = ['3bdi', '5sv5','6qaz','2e0q','5xb0','6bde','1a8q','5o0t','1drf','1shg']\n",
"MASK_PERCENT = 0.5 # Allow about 50% of the Protein to be designed\n",
"PDB_ID = TESTED_PDBS[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "59e2d4b8",
"metadata": {
"id": "59e2d4b8"
},
"outputs": [],
"source": [
"# Configure Substructure Conditioner\n",
"from chroma.utility.chroma import plane_split_protein\n",
"protein = Protein(PDB_ID, canonicalize=True, device=device)\n",
"\n",
"X, C, _ = protein.to_XCS()\n",
"residues_to_design = plane_split_protein(X, C, protein, 0.5).nonzero()[:,1].tolist()\n",
"protein.sys.save_selection(gti=residues_to_design, selname=\"infilling_selection\")\n",
"\n",
"conditioner = conditioners.SubstructureConditioner(\n",
" protein,\n",
" backbone_model=chroma.backbone_network,\n",
" selection = 'namesel infilling_selection').to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c03aeb4b",
"metadata": {
"id": "c03aeb4b"
},
"outputs": [],
"source": [
"# Draw a Sample\n",
"torch.manual_seed(0)\n",
"infilled_protein = chroma.sample(\n",
" protein_init=protein,\n",
" conditioner=conditioner,\n",
" langevin_factor=4.0,\n",
" langevin_isothermal=True,\n",
" inverse_temperature=8.0,\n",
" sde_func='langevin',\n",
" steps=500)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2f8d76f",
"metadata": {
"id": "f2f8d76f"
},
"outputs": [],
"source": [
"display(infilled_protein)"
]
},
{
"cell_type": "markdown",
"id": "269d8f5e",
"metadata": {
"id": "269d8f5e",
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Shape\n",
"\n",
"The shape conditioner enforces adherance to a predefined volumetric shape as represented by a point cloud. In the below example we use the Python Imaging Library to render a 3D point cloud from letters, and then we use the ShapeConditioner to sample backbones consistent with this point cloud. The user can set hyperparameters and vary the letter and the number of residues. For faster feedback, the number of steps has been decreased from that used in the manuscript. In this example both the choice of `LETTER` and the number of protein residues that fill the point cloud.\n",
" * `LETTER`: a single character string containing the letter that will be made by the conditioner.\n",
" * `NUM_RESIDUES`: the number of protein residues to fill the point cloud.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4736bb86",
"metadata": {
"id": "4736bb86"
},
"outputs": [],
"source": [
"LETTER = \"G\"\n",
"NUM_RESIDUES = 1000"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a2e109a",
"metadata": {
"id": "2a2e109a",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Configure Shape Conditioner\n",
"from chroma.utility.chroma import letter_to_point_cloud\n",
"letter_point_cloud = letter_to_point_cloud(LETTER)\n",
"\n",
"conditioner = conditioners.ShapeConditioner(\n",
" letter_point_cloud,\n",
" chroma.backbone_network.noise_schedule,\n",
" autoscale_num_residues=NUM_RESIDUES).to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "adbe3e70",
"metadata": {
"id": "adbe3e70",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Draw a Sample\n",
"torch.manual_seed(0)\n",
"shaped_protein = chroma.sample(chain_lengths=[NUM_RESIDUES], conditioner=conditioner)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "111c8b74",
"metadata": {
"id": "111c8b74"
},
"outputs": [],
"source": [
"display(shaped_protein)"
]
},
{
"cell_type": "markdown",
"id": "27e1fcce",
"metadata": {
"id": "27e1fcce",
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## CATH class\n",
"\n",
"Proteins can be conditionally generated with specified folds according to CATH class annotations. This conditioner uses the ProClass Model. Below we show a minimal example conditioning on generating a protein with mostly beta content.\n",
"\n",
"The ProClass Conditioner can set CATH class annotations at 3 levels.\n",
"\n",
"* `CATH_ANNOTATION`: `X`, e.g. `2` Selects a C level annotation, in this case \"Mostly Beta\"\n",
"* `CATH_ANNOTATION`: `X.X`, e.g. `2.60` Selects a CA level annotation, in this case \"Sandwich\"\n",
"* `CATH_ANNOTATION`: `X.X.X` e.g. `2.60.40` Selects a CAT level annotation, in this case \"Immunoglobulin-like\"\n",
"\n",
"In general C level annotations are most robust. CA and CAT level annotations typically require many more samples to get good results. See the paper experiments for details."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48107807",
"metadata": {
"id": "48107807",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"CATH_ANNOTATION = '2.60.40'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "24d5e164",
"metadata": {
"id": "24d5e164",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Draw a Sample\n",
"torch.manual_seed(0)\n",
"conditioner = conditioners.ProClassConditioner('cath', CATH_ANNOTATION)\n",
"cath_conditioned_protein = chroma.sample(conditioner=conditioner)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2fa3492b",
"metadata": {
"id": "2fa3492b",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"display(cath_conditioned_protein)"
]
},
{
"cell_type": "markdown",
"id": "4f09cb2e",
"metadata": {
"id": "4f09cb2e",
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Natural language"
]
},
{
"cell_type": "markdown",
"id": "af8201d4",
"metadata": {
"id": "af8201d4"
},
"source": [
"Here, we demonstrate backbone generation conditioned on natural language prompts. The sampling is guided by the gradients of a structure to text model. To condition, we define a `ProCapConditioner` with the following inputs:\n",
"- a caption\n",
"- the chain ID, specifying the (1-indexed) caption refers to; captions corresponding to the entire protein can be indicated with `chain_id = -1`\n",
"- the weight with which to use the conditioner\n",
"\n",
"Training was performed with individual chain captions drawn from UniProt, and complex-level captions taken from the PDB.\n",
"\n",
"Below, we demonstrate caption-guided sampling to obtain a single chain backbone corresponding to an SH2 domain."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d9dfce9",
"metadata": {
"id": "8d9dfce9",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"CAPTION = \"Crystal structure of SH2 domain\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05e02265",
"metadata": {
"id": "05e02265",
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# Draw a Sample\n",
"torch.manual_seed(0)\n",
"conditioner = conditioners.ProCapConditioner(CAPTION, -1)\n",
"caption_conditioned_protein = chroma.sample(steps=200, chain_lengths=[110], conditioner=conditioner)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bb43c861",
"metadata": {
"id": "bb43c861",
"pycharm": {
"name": "#%%\n"
},
"scrolled": true
},
"outputs": [],
"source": [
"display(caption_conditioned_protein)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}