# Copyright Generate Biomedicines, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import logging import re import warnings from dataclasses import dataclass from functools import partial from typing import Dict, List, Tuple import numpy as np import torch import chroma.utility.polyseq as polyseq import chroma.utility.starparser as sp from chroma import constants @dataclass class SystemAssemblyInfo: """A class for representing the assembly information for System objects. assemblies (dict): a dictionary of assemblies with keys being assembly IDs and values being dictionaries with of the following structure: { "details": "complete icosahedral assembly", "instructions": [ { "oper_expression": "(1-60)", "chains": [0, 1, 2], # Each assembly instruction has information for generating # one or more images, with image `i` generated by applying # the sequence of operations with IDs in `operations[i]` to the # list of chains in `chains`. The corresponding operations # are described under `assembly_info["operations"][ID]`. "operations": [["X0", "1", "2", "3"], ["X0", "4", "5", "6"]]], }, ... ], } operations (dict): a dictionary with symmetry operations. Keys are operation IDs and values being dictionaries with the following structure: { "type": "identity operation", "name": "1_555", "matrix": np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]), "vector": np.array([0., 0., 0.]), }, ... """ assemblies: dict operations: dict def __init__(self, assemblies: dict = dict(), operations: dict = dict()): self.assemblies = assemblies self.operations = operations @staticmethod def make_operation(type: str, name: str, matrix: list, vector: list): op = { "type": type, "name": name, "matrix": np.zeros([3, 3]), "vector": np.zeros([3, 1]), } assert len(matrix) == 9, "expected 9 elements in rotation matrix" assert len(vector) == 3, "expected 3 elements in translation vector" for i in range(3): op["vector"][i] = float(vector[i]) for j in range(3): op["matrix"][i][j] = float(matrix[i * 3 + j]) return op def delete_chain(self, cid: str): """Deletes the mention of the chain from assembly information. Args: cid (str): Chain ID to delete. """ for ass_id, assembly in self.assemblies.items(): for ins in assembly["instructions"]: ins["chains"] = [_id for _id in ins["chains"] if _id != cid] def rename_chain(self, old_cid: str, new_cid: str): """Renames all mentions of a chain to its new chain ID. Args: old_cid (str): Chain ID to rename. new_cid (str): Newly assigned Chain ID. """ for ass_id, assembly in self.assemblies.items(): for ins in assembly["instructions"]: ins["chains"] = [ new_cid if cid == old_cid else cid for cid in ins["chains"] ] class StringList: """A class for representing and accessing a list of strings in a highly memory-efficient manner. Access is constant time, but modification is linear time in length of list. """ def __init__(self, init_list: List[str] = []): self.string = "" self.rng = ArrayList(2, dtype=int) for i in range(len(init_list)): self.append(init_list[i]) def __getitem__(self, i: int): beg, length = self.rng[i] return self.string[beg : beg + length] def __setitem__(self, i: int, new_string: str): beg, length = self.rng[i] self.string = self.string[:beg] + new_string + self.string[beg + length :] if len(new_string) != length: self.rng[i, 1] = len(new_string) self.rng[i + 1 :, 0] = self.rng[i + 1 :, 0] + len(new_string) - length def __str__(self): return self.string def __len__(self): return len(self.rng) def copy(self): new_list = StringList() new_list.string = self.string new_list.rng = self.rng.copy() return new_list def append(self, new_string: str): self.rng.append([len(self.string), len(new_string)]) self.string = self.string + new_string def insert(self, i: int, new_string: str): if i < len(self): ix, _ = self.rng[i] elif i == len(self): if len(self) == 0: ix = 0 else: ix = self.rng[i - 1].sum() else: raise Exception( f"cannot insert in position {i} for stringList of length {len(self)}" ) self.string = self.string[0:ix] + new_string + self.string[ix:] self.rng.insert(i, [ix, len(new_string)]) if len(new_string) > 0: self.rng[i + 1 :, 0] = self.rng[i + 1 :, 0] + len(new_string) def pop(self, i: int): beg, length = self.rng[i] val = self.string[beg : beg + length] self.string = self.string[0:beg] + self.string[beg + length :] self.rng[i + 1 :, 0] = self.rng[i + 1 :, 0] - len(val) self.rng.pop(i) return val def delete_range(self, rng: range): rng = sorted(rng) [i, j] = [rng[0], rng[-1]] beg, _ = self.rng[i] end = self.rng[j].sum() self.string = self.string[0:beg] + self.string[end:] self.rng[j + 1 :, 0] = self.rng[j + 1 :, 0] - (end - beg + 1) self.rng.delete_range(rng) class NameList: """A class for representing and accessing a list of "names"--i.e., strings that tend to have generic values, such that many repeat values are expected in a given list.""" def __init__(self, init_list: List[str] = []): self._reindex(init_list) def _reindex(self, init_list: List[str]): self.unique_names = [] self.name_indicies = dict() self.index_use = dict() self.indices = ArrayList(1, dtype=int) for name in init_list: self.append(name) def copy(self): new_list = NameList() new_list.unique_names = self.unique_names.copy() new_list.name_indicies = self.name_indicies.copy() new_list.index_use = self.index_use.copy() new_list.indices = self.indices.copy() return new_list def _check_index(self): L = len(self.unique_names) I = len(self.index_use) if (L > 2 * I) and (L - I > 10): self._reindex([self[i] for i in range(len(self))]) def __getitem__(self, i: int): try: idx = self.indices[i].item() except IndexError as e: raise IndexError(f"index {i} out of range for nameList\n" + str(e)) return self.unique_names[idx] def __setitem__(self, i: int, new_name: str): try: idx = self.indices[i] except IndexError as e: raise IndexError(f"index {i} out of range for nameList\n" + str(e)) self.index_use[idx] = self.index_use[idx] - 1 if self.index_use[idx] == 0: del self.index_use[idx] if new_name not in self.name_indicies: idx = len(self.name_indicies) self.name_indicies[new_name] = idx self.unique_names.append(new_name) else: idx = self.name_indicies[new_name] self.indices[i] = idx self._update_use(idx, 1) self._check_index() def __str__(self): return str([self[i] for i in range(len(self))]) def __len__(self): return len(self.indices) def _update_use(self, idx, delta): self.index_use[idx] = self.index_use.get(idx, 0) + delta if self.index_use[idx] <= 0: del self.index_use[idx] def _get_name_index(self, name: str): if name not in self.name_indicies: idx = len(self.name_indicies) self.name_indicies[name] = idx self.unique_names.append(name) else: idx = self.name_indicies[name] return idx def append(self, name: str): idx = self._get_name_index(name) self.indices.append(idx) self.index_use[idx] = self.index_use.get(idx, 0) + 1 def insert(self, i: int, new_string: str): idx = self._get_name_index(new_string) self.indices.insert(i, idx) self.index_use[idx] = self.index_use.get(idx, 0) + 1 def pop(self, i: int): idx = self.indices.pop(i).item() val = self.unique_names[idx] self._update_use(idx, -1) self._check_index() return val def delete_range(self, rng: range): for i in reversed(sorted(rng)): self.pop(i) class ArrayList: def __init__(self, ndims: int, dtype: type, length: int = 0, val=0): if ndims == 1: self._array = np.ndarray(shape=(max(length, 2)), dtype=dtype) else: self._array = np.ndarray(shape=(max(length, 2), ndims), dtype=dtype) self.ndims = ndims self._array[:] = val self.length = length # view of just the data without the extra allocated stuff self.array = self._array[: self.length] def convert_negative_slice(self, slice_obj): start = slice_obj.start if slice_obj.start is not None else 0 stop = slice_obj.stop if slice_obj.stop is not None else self.length if start < 0: start = self.length + start if stop < 0: stop = self.length + stop return slice(start, stop, slice_obj.step) def copy(self): new_list = ArrayList(ndims=self.ndims, dtype=self.array.dtype, length=len(self)) new_list[:] = self[:] return new_list def __len__(self): return self.length def capacity(self): return self._array.shape[0] def __getitem__(self, i: int): return self.array[i] def __setitem__(self, i: int, row: list): self.array[i] = row def resize(self, delta): # for speed, hard-code instead of calling len() and capacity() new_length = self.length + delta cap = self._array.shape[0] if (new_length > cap) or (new_length < cap / 3): new_capacity = 2 * new_length self._resize(new_capacity) self.length = new_length self.array = self._array[: self.length] def _resize(self, new_size): if self.ndims == 1: self._array.resize((new_size), refcheck=False) else: self._array.resize((new_size, self.ndims), refcheck=False) def items(self): for i in range(self.length): yield self.array[i, :] def append(self, row: list): self.resize(1) self.array[-1] = row def insert(self, i: int, row: list): """Insert the row such that it ends up being at index ``i`` in the new arrayList""" # resize by +1 self.resize(1) # everything in range [i:end-1) moves over by +1 self.array[i + 1 :] = self.array[i:-1] # set the value at index i self.array[i] = row def pop(self, i: int): """Remove and return element at index i""" # get the element at index i row = self.array[i].copy() # everything from [i+1; end) moves over by -1 self.array[i:-1] = self.array[i + 1 :] # resize by -1 self.resize(-1) return row def delete_range(self, rng: range): i, j = min(rng), max(rng) # move over to the left to account for the removed part cut_length = j - i + 1 new_length = len(self) - cut_length self.array[i:new_length] = self.array[j + 1 :] # resize by -1 self.resize(-cut_length) def __str__(self): return str([self[i] for i in range(len(self))]) @dataclass class HierarchicList: """A utility class that represents a hierarchy of lists. Each level represents a list of elements, each element having a set of properties (each property being stored as an array-like object over elements). Further, each element has a number of children corresponding to a range of elements in a lower-hierarhy list.""" _properties: dict _parent_list: HierarchicList _child_list: HierarchicList _num_children: ArrayList # (1, n) _child_offset: ArrayList # (1, n) def __init__( self, properties: dict, parent_list: HierarchicList = None, num_children: ArrayList = ArrayList(1, dtype=int), ): self._properties = dict() for key in properties: self._properties[key] = properties[key].copy() self._parent_list = parent_list if self._parent_list is not None: self._parent_list._child_list = self self._child_list = None self._num_children = num_children.copy() if num_children is not None else None # start off with lazy offsets, self.reindex() creates them self._child_offset = None def copy(self): new_list = HierarchicList( self._properties, self._parent_list, self._num_children ) new_list._child_list = self._child_list if self._child_offset is None: new_list._child_offset = None else: new_list._child_offset = self._child_offset.copy() return new_list def set_parent(self, parent_list: HierarchicList): self._parent_list = parent_list def child_index(self, i: int, at: int): if self._child_offset is not None: return self._child_offset[i] + at return self._num_children[0:i].sum() + at def reindex(self): if self._num_children is not None: self._child_offset = ArrayList( 1, dtype=int, length=len(self._num_children), val=0 ) for i in range(1, len(self)): self._child_offset[i] = ( self._child_offset[i - 1] + self._num_children[i - 1] ) def append_child(self, properties): self._num_children[len(self._num_children) - 1] += 1 self._child_list.append(properties) def insert_child(self, i: int, at: int, properties): idx = self.child_index(i, at) self._num_children[i] += 1 self._child_offset = None self._child_list.insert(idx, properties) return idx def delete_child(self, i: int, at: int): idx = self.child_index(i, at) self._num_children[i] -= 1 self._child_offset = None self._child_list.delete(idx) def append(self, properties): if set(properties.keys()) != set(self._properties.keys()): raise Exception(f"unexpected set of attributes '{list(properties.keys())}") for key, value in properties.items(): self._properties[key].append(value) if self._child_offset is not None: self._child_offset.append( self._child_offset[-1:].sum() + self._num_children[-1:].sum() ) if self._num_children is not None: self._num_children.append(0) def insert(self, i: int, properties): if set(properties.keys()) != set(self._properties.keys()): raise Exception(f"unexpected set of attributes '{list(properties.keys())}") for key, value in properties.items(): self._properties[key].insert(i, value) if self._child_offset is not None: if i >= len(self._child_offset): off = self._child_offset[-1:].sum() + self._num_children[-1:].sum() else: off = self._child_offset[i] self._child_offset.insert(i, off) if self._num_children is not None: self._num_children.insert(i, 0) def delete(self, i: int): for key in self._properties: self._properties[key].pop(i) if self._num_children is not None and self._num_children[i] != 0: for at in range(self._num_children[i] - 1, -1, -1): self.delete_child(i, at) self._num_children.pop(i) self._child_offset = None def delete_range(self, rng: range): for key in self._properties: self._properties[key].delete_range(rng) # iterating in descending order so that child offsets remain valid for subsequent elements for i in reversed(sorted(rng)): if self._num_children is not None and self._num_children[i] != 0: idx = self.child_index(i, 0) self._child_list.delete_range( self, range(idx, idx + self._num_children[i]) ) self._num_children[i] = 0 self._child_offset = None def __len__(self): for key in self._properties: return len(self._properties[key]) return None def __getitem__(self, i: str): return self._properties[i] # def __setitem__(self, i: tuple, val): # self._properties[i[0]][i[1]] = val def num_children(self, i: int): return self._num_children[i] def has_children(self, i: int): return self._num_children is not None and self._num_children[i] def __str__(self): string = "Properties:\n" for key in self._properties: string += f"{key}: {str(self._properties[key])}\n" string += f"num_children: {str(self._num_children)}\n" string += f"child_offset: {str(self._child_offset)}\n" string += "----\n" string += str(self._child_list) return string @dataclass class System: """A class for storing, accessing, managing, and manipulating a molecular system's structure, sequence, and topological information. The class is organized as a hierarchy of objects: System: top-level class containing all information about a molecular system -> Chain: a sub-portion of the System; for polymers this is generally a chemically connected molecular graph belong to a System (e.g., for protein complexes, this would be one of the proteins). -> Residue: a generally chemically-connected molecular unit (for polymers, the repeating unit), belonging to a Chain. -> Atom: an atom belonging to a Residue with zero, one, or more locations. -> AtomLocation: the location of an Atom (3D coordinates and other information). Attributes: name (str): given name for System _chains (list): a list of Chain objects _entities (dict): a dictionary of SystemEntity objects, with keys being entity IDs _chain_entities (list): `chain_entities[ci]` stores entity IDs (i.e., keys into `entities`) corresponding to the entity for chain `ci` _extra_models (list): a list of hierarchicList object, representing locations for alternative models _labels (dict): a dictionary of residue labels. A label is a string value, under some category (also a string), associated with a residue. E.g., the category could be "SSE" and the value could be "H" or "S". If entry `labels[category][gti]` exists and is equal to `value`, this means that residue with global template index `gti` has the label `category:value`. _selections (dict): a dictionary of selections. Keys are selection names and values are lists of corresponding gti indices. _assembly_info (SystemAssemblyInfo): information on symmetric assemblies that can be constructed from components of the molecular system. See ``SystemAssemblyInfo``. """ name: str _chains: HierarchicList _residues: HierarchicList _atoms: HierarchicList _locations: HierarchicList _entities: Dict[int, SystemEntity] _chain_entities: List[int] _extra_models: List[HierarchicList] _labels: Dict[str, Dict[int, str]] _selections: Dict[str, List[int]] _assembly_info: SystemAssemblyInfo def __init__(self, name: str = "system"): self.name = name self._chains = HierarchicList( properties={ "cid": StringList(), "segid": StringList(), "authid": StringList(), } ) self._residues = HierarchicList( properties={ "name": NameList(), "resnum": ArrayList(1, dtype=int), "authresid": StringList(), "icode": ArrayList(1, dtype="U1"), }, parent_list=self._chains, ) self._atoms = HierarchicList( properties={"name": NameList(), "het": ArrayList(1, dtype=bool)}, parent_list=self._residues, ) self._locations = HierarchicList( properties={ "coor": ArrayList(5, dtype=float), "alt": ArrayList(1, dtype="U1"), }, parent_list=self._atoms, num_children=None, ) self._entities = dict() self._chain_entities = [] self._extra_models = [] self._labels = dict() self._selections = dict() self._assembly_info = SystemAssemblyInfo() def _reindex(self): self._chains.reindex() self._residues.reindex() self._atoms.reindex() self._locations.reindex() def _print_indexing(self): for chain in self.chains(): off = self._chains.child_index(chain._ix, 0) num = self._chains.num_children(chain._ix) print(f"chain {chain._ix}, {chain}: [{off} - {off + num})") for residue in chain.residues(): off = self._residues.child_index(residue._ix, 0) num = self._residues.num_children(residue._ix) print(f"\tresidue {residue._ix}, {residue}: [{off} - {off + num})") for atom in residue.atoms(): off = self._atoms.child_index(atom._ix, 0) num = self._atoms.num_children(atom._ix) print(f"\t\tatom {atom._ix}, {atom}: [{off} - {off + num})") for loc in atom.locations(): has_children = self._locations.has_children(loc._ix) print( f"\t\t\tlocation {loc._ix}, {loc}: has children? {has_children}" ) @classmethod def from_XCS( cls, X: torch.Tensor, C: torch.Tensor, S: torch.Tensor, alternate_alphabet: str = None, ) -> System: """Convert an XCS set of pytorch tensors to a new System object. B is batch size (Function only handles batch size of one now) N is the number of residues Args: X (torch.Tensor): Coordinates with shape `(1, num_residues, num_atoms, 3)`. `num_atoms` will be 14 if `all_atom=True` or 4 otherwise. C (torch.LongTensor): Chain map with shape `(1, num_residues)`. It codes positions as 0 when masked, positive integers for chain indices, and negative integers to represent missing residues of the corresponding positive integers. S (torch.LongTensor): Sequence with shape `(1, num_residues)`. alternate_alphabet (str, optional): Optional alternative alphabet for sequence encoding. Otherwise the default alphabet is set in `constants.AA20`.Amino acid alphabet for embedding. Returns: System: A System object with the new XCS data. """ alphabet = constants.AA20 if alternate_alphabet is None else alternate_alphabet all_atom = X.shape[2] == 14 assert X.shape[0] == 1 assert C.shape[0] == 1 assert S.shape[0] == 1 assert X.shape[1] == S.shape[1] assert C.shape[1] == C.shape[1] X, C, S = [T.squeeze(0).cpu().data.numpy() for T in [X, C, S]] chain_ids = np.abs(C) atom_count = 0 new_system = cls("system") for i, chain_id in enumerate(np.unique(chain_ids)): if chain_id == 0: continue chain_bool = chain_ids == chain_id X_chain = X[chain_bool, :, :].tolist() C_chain = C[chain_bool].tolist() S_chain = S[chain_bool].tolist() # Build chain chain = new_system.add_chain("A") for chain_ix, (X_i, C_i, S_i) in enumerate(zip(X_chain, C_chain, S_chain)): resname = polyseq.to_triple(alphabet[int(S_i)]) # Build residue residue = chain.add_residue( resname, chain_ix + 1, str(chain_ix + 1), " " ) if C_i > 0: atom_names = constants.ATOMS_BB if all_atom and resname in constants.AA_GEOMETRY: atom_names = ( atom_names + constants.AA_GEOMETRY[resname]["atoms"] ) for atom_ix, atom_name in enumerate(atom_names): x, y, z = X_i[atom_ix] atom_count += 1 residue.add_atom(atom_name, False, x, y, z, 1.0, 0.0, " ") # add an entity for each chain (copy from chain information) for ci, chain in enumerate(new_system.chains()): seq = [None] * chain.num_residues() het = [None] * chain.num_residues() for ri, res in enumerate(chain.residues()): seq[ri] = res.name het[ri] = all(a.het for a in res.atoms()) entity_type, polymer_type = SystemEntity.guess_entity_and_polymer_type(seq) entity = SystemEntity( entity_type, f"chain {chain.cid}", polymer_type, seq, het ) new_system.add_new_entity(entity, [ci]) return new_system def to_XCS( self, all_atom: bool = False, batch_dimension: bool = True, mask_unknown: bool = True, unknown_token: int = 0, reorder_chain: bool = True, alternate_alphabet=None, alternate_atoms=None, get_indices=False, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Convert System object to XCS format. `C` tensor has shape [num_residues], where it codes positions as 0 when masked, positive integers for chain indices, and negative integers to represent missing residues of the corresponding positive integers. `S` tensor has shape [num_residues], it will map residue amino acid to alphabet integers. If it is not found in `alphabet`, it will default to `unknown_token`. Set `mask_unknown` to true if also want to mask `unk residue` in `chain_map` This function takes into account missing residues and updates chain_map accordingly. Args: system (type): generate System object to convert. all_atom (bool): Include side chain atoms. Default is `False`. batch_dimension (bool): Include a batch dimension. Default is `True`. mask_unknown (bool): Mask residues not found in the alphabet. Default is `True`. unknown_token (int): Default token index if a residue is not found in the alphabet. Default is `0`. reorder_chain (bool): If set to true will start indexing chain at 1, else will use the alphabet index (Default: True) altenate_alphabet (str): Alternative alphabet if not `None`. alternate_atoms (list): Alternate atom name subset for `X` if not `None`. get_indices (bool): Also return the location indices corresponding to the returned `X` tensor. Returns: X (torch.Tensor): Coordinates with shape `(1, num_residues, num_atoms, 3)`. `num_atoms` will be 14 if `all_atom=True` or 4 otherwise. C (torch.LongTensor): Chain map with shape `(1, num_residues)`. It codes positions as 0 when masked, positive integers for chain indices, and negative integers to represent missing residues of the corresponding positive integers. S (torch.LongTensor): Sequence with shape `(1, num_residues)`. location_indices (np.ndaray, optional): location indices corresponding to the coordinates in `X`. """ alphabet = constants.AA20 if alternate_alphabet is None else alternate_alphabet # Get chain map grabbing each chain in system and look at length C = [] for ch_id, chain in enumerate(self.chains()): ch_str = chain.cid if ch_str in list(constants.CHAIN_ALPHABET): map_ch_id = list(constants.CHAIN_ALPHABET).index(ch_str) else: # fmt: off map_ch_id = np.setdiff1d(np.arange(1, len(constants.CHAIN_ALPHABET)), np.unique(C))[0] # fmt: on if reorder_chain: map_ch_id = ch_id + 1 C += [map_ch_id] * chain.num_residues() # Grab full sequence oneLetterSeq = self.sequence(format="one-letter-string") if len(oneLetterSeq) != len(C): logging.warning("Warning, System and chain_map length don't agree") # Initialize recipient arrays atom_names = None if all_atom: num_atoms = 14 if all_atom else 4 else: if alternate_atoms is not None: atom_names = alternate_atoms else: atom_names = constants.ATOMS_BB num_atoms = len(atom_names) atom_names = {a: i for (i, a) in enumerate(atom_names)} num_residues = self.num_residues() X = np.zeros([num_residues, num_atoms, 3]) location_indices = ( np.zeros([num_residues * num_atoms], dtype=int) if get_indices else None ) S = [] # Array will contain sequence indices for i in range(num_residues): # If residue should be mask or not is_mask = False # Add sequence if oneLetterSeq[i] in list(alphabet): S.append(alphabet.index(oneLetterSeq[i])) else: S.append(unknown_token) if mask_unknown: is_mask = True # Get residue from system res = self.get_residue(i) if res is None or not res.has_structure(): is_mask = True # If residue is mask because no structure or not found in alphabet if is_mask: # Set chain map to -x C[i] = -abs(C[i]) else: # Loop through atoms if all_atom: code3 = constants.AA20_1_TO_3[oneLetterSeq[i]] atom_names = ( constants.ATOMS_BB + constants.AA_GEOMETRY[code3]["atoms"] ) atom_names = {a: i for (i, a) in enumerate(atom_names)} X[ i, : ] = np.nan # so we can tell whether some atom was previously found num_rem = len(atom_names) for atom in res.atoms(): name = System.protein_backbone_atom_type(atom.name, False, True) if name is None: name = atom.name ix = atom_names.get(name, None) if ix is None or not np.isnan(X[i, ix, 0]): continue for loc in atom.locations(): X[i, ix] = loc.coors if location_indices is not None: location_indices[i * num_atoms + ix] = loc.get_index() num_rem -= 1 break if num_rem == 0: break if num_rem != 0: C[i] = -abs(C[i]) X[i, :] = 0 np.nan_to_num(X[i, :], copy=False, nan=0) # Tensor everything X = torch.tensor(X).float() C = torch.tensor(C).type(torch.long) S = torch.tensor(S).type(torch.long) # Unsqueeze all the thing if batch_dimension: X = X.unsqueeze(0) C = C.unsqueeze(0) S = S.unsqueeze(0) if location_indices is not None: return X, C, S, location_indices return X, C, S def update_with_XCS(self, X, C=None, S=None, alternate_alphabet=None): """Update the System with XCS coordinates. NOTE: if the System has more than one model, and if the shape of the System changes (i.e., atoms are added or deleted), the additional models will be wiped. Args: X (Tensor): Coordinates with shape `(1, num_residues, num_atoms, 3)`. `num_atoms` will be 14 if `all_atom=True` or 4 otherwise. C (LongTensor): Chain map with shape `(1, num_residues)`. It codes positions as 0 when masked, positive integers for chain indices, and negative integers to represent missing residues of the corresponding positive integers. Defaults to the current System's chain map. S (LongTensor): Sequence with shape `(1, num_residues)`. Defaults to the current System's sequence. """ if C is None or S is None: _, _C, _S = self.to_XCS() if C is None: C = _C if S is None: S = _S # check to make sure sizes agree if not ( (X.shape[1] == self.num_residues()) and (X.shape[1] == C.shape[1]) and (X.shape[1] == S.shape[1]) ): raise Exception( f"input tensor sizes {X.shape}, {C.shape}, and {S.shape}, disagree with System size {self.num_residues()}" ) def _process_inputs(T): if T is not None: if len(T.shape) == 2 or len(T.shape) == 4: T = T.squeeze(0) T = T.to("cpu").detach().numpy() return T X, C, S = map(_process_inputs, [X, C, S]) shape_changed = False alphabet = constants.AA20 if alternate_alphabet is None else alternate_alphabet for i, res in enumerate(self.residues()): # atoms to update must have structure and are present in the chain map if not res.has_structure() or C[i] <= 0: continue # First, determine if the sequence has changed resname = "UNK" if S is not None and S[i] < len(alphabet): resname = polyseq.to_triple(alphabet[S[i]]) # If the identity changes, rename and delete side chain atoms if res.name != resname: res.rename(resname) # Second, delete all atoms that are missing in XCS or have duplicate names atoms_sys = [atom.name for atom in res.atoms()] atoms_XCS = constants.ATOMS_BB if resname in constants.AA_GEOMETRY: atoms_XCS = atoms_XCS + constants.AA_GEOMETRY[resname]["atoms"] atoms_XCS = atoms_XCS[: X.shape[1]] to_delete = [] for ix_a, atom in enumerate(res.atoms()): name = atom.name if name not in atoms_XCS or name in atoms_sys[:ix_a]: to_delete.append(atom) if len(to_delete) > 0: shape_changed = True res.delete_atoms(to_delete) # Finally, update all atom coordinates and manufacture any missing atoms for x_id, atom_name in enumerate(atoms_XCS): atom = res.find_atom(atom_name) x, y, z = [X[i][x_id][k].item() for k in range(3)] if atom is not None and atom.num_locations() > 0: atom.x = x atom.y = y atom.z = z else: shape_changed = True if atom is not None: atom.add_location(x, y, z) else: res.add_atom(atom_name, False, x, y, z, 1.0, 0.0) # wipe extra models if the shape of the System changed if shape_changed: self._extra_models = [] def __str__(self): return "system " + self.name def chains(self): """Chain iterator (generator function).""" for ci in range(len(self._chains)): yield ChainView(ci, self) def get_chain(self, ci: int): """Returns the chain by index. Args: ci (int): Chain index (from 0) Returns: ChainView object corresponding to the chain in question. """ return ChainView(ci, self) def get_chain_by_id(self, cid: str, segid=False): """Returns the chain by its string ID. Args: cid (str): Chain ID. segid (bool, optional): If set to True (default is False) will return the chain with the matching segment ID and not chain ID. Returns: ChainView object corresponding to the chain in question. """ for ci, chain in enumerate(self.chains()): if (not segid and cid == chain.cid) or (segid and cid == chain.segid): return ChainView(ci, self) return None def get_chains(self): """Returns the list of all chains.""" return [ChainView(ci, self) for ci in range(len(self._chains))] def get_chains_of_entity(self, entity_id: int, by=None): """Returns the list of chains that correspond to the given entity ID. Args: entity_id (int): Entity ID. by (str, optional): If specified as "index", will return a list of chain indices instead of ChainView objects. Returns: List of ChainView objects or chain indices. """ cixs = [ci for (ci, eid) in enumerate(self._chain_entities) if entity_id == eid] if by == "index": return cixs return [ChainView(ci, self) for ci in cixs] def residues(self): """Residue iterator (generator function).""" for chain in self.chains(): for residue in chain.residues(): yield residue def get_residue(self, gti: int): """Returns the residue at the given global index. Args: gti (int): Global residue index. Returns: ResidueView object corresponding to the index. """ if gti < 0: raise Exception(f"negative residue index: {gti}") off = 0 for chain in self.chains(): nr = chain.num_residues() if gti < off + nr: return chain.get_residue(gti - off) off = off + nr raise Exception( f"residue index {gti} out of range for System, which has {self.num_residues()} residues" ) def atoms(self): """Iterator of atoms in this System (generator function).""" for chain in self.chains(): for residue in chain.residues(): for atom in residue.atoms(): yield atom def get_atom(self, aidx: int): """Returns the atom at the given global atom index. Args: gti (int): Global atom index. Returns: AtomView object corresponding to the index. """ if aidx < 0: raise Exception(f"negative atom index: {aidx}") off = 0 for chain in self.chains(): na = chain.num_atoms() if aidx < off + na: return chain.get_atom(aidx - off) off = off + na raise Exception( f"atom index {aidx} out of range for System, which has {self.num_atoms()} atoms" ) def locations(self): """Iterator of atoms in this System (generator function).""" for chain in self.chains(): for residue in chain.residues(): for atom in residue.atoms(): for loc in atom.locations(): yield loc def _new_locations(self): new_locs = self._locations.copy() for li in range(len(new_locs)): new_locs["coor"][li] = [np.nan] * 5 return new_locs def select(self, expression: str, left_associativity: bool = True): """Evalates the given selection expression and returns all atoms involved in the result as a list of AtomView's. Args: expression (str): selection expression. left_associativity (bool, optional): determines whether operators in the expression are left-associative. Returns: List of AtomView's. """ val, selex_info = self._select( expression, left_associativity=left_associativity ) # make a list of AtomView result = [selex_info["all_atoms"][i].atom for i in sorted(val)] return result def select_residues( self, expression: str, gti: bool = False, allow_unstructured=False, left_associativity: bool = True, ): """Evalates the given selection expression and returns all residues with any atoms involved in the result as a list of ResidueView's or list of gti's. Args: expression (str): selection expression. gti (bool): if True (default is False), will return a list of gti instead of a list of ResidueView's. allow_unstructured (bool): If True (default is False), will allow unstructured residues to be selected. left_associativity (bool, optional): determines whether operators in the expression are left-associative. Returns: List of ResidueView's or gti's (ints). """ val, selex_info = self._select( expression, unstructured=allow_unstructured, left_associativity=left_associativity, ) # make a list of ResidueView or gti's if gti: result = sorted(set([selex_info["all_atoms"][i].rix for i in val])) else: residues = dict() for i in val: a = selex_info["all_atoms"][i] residues[a.rix] = a.atom.residue result = [residues[rix] for rix in sorted(residues.keys())] return result def select_chains( self, expression: str, allow_unstructured=False, left_associativity: bool = True ): """Evalates the given selection expression and returns all chains with any atoms involved in the result as a list of ChainView's. Args: expression (str): selection expression. allow_unstructured (bool): If True (default is False), will allow unstructured chains to be selected. left_associativity (bool, optional): determines whether operators in the expression are left-associative. Returns: List of ResidueView's or gti's (ints). """ val, selex_info = self._select( expression, unstructured=allow_unstructured, left_associativity=left_associativity, ) # make a list of ResidueView or gti's chains = dict() for i in val: a = selex_info["all_atoms"][i] chains[a.cix] = a.atom.chain result = [chains[rix] for rix in sorted(chains.keys())] return result def _select( self, expression: str, unstructured: bool = False, left_associativity: bool = True, ): # Build some helpful data structures to support _selex_eval @dataclass(frozen=True) class MappableAtom: atom: AtomView aix: int rix: int cix: int def __hash__(self) -> int: return self.aix # first collect all real atoms all_atoms = [None] * self.num_atoms() cix, rix, aix = 0, 0, 0 for chain in self.chains(): for residue in chain.residues(): for atom in residue.atoms(): all_atoms[aix] = MappableAtom(atom, aix, rix, cix) aix = aix + 1 # for residues that do not have atoms, add a dummy atom with no location # or name; that way, we can still select the residue even though selection # algebra fundamentally works on atoms if residue.num_atoms() == 0: view = DummyAtomView(residue) view.dummy = True # make more room at the end of the list since as this is an "extra" atom all_atoms.append(None) all_atoms[aix] = MappableAtom(view, aix, rix, cix) aix = aix + 1 rix = rix + 1 cix = cix + 1 _selex_info = {"all_atoms": all_atoms} _selex_info["all_indices_set"] = set([a.aix for a in all_atoms]) # fmt: off # make an expression tree object tree = ExpressionTreeEvaluator( ["hyd", "all", "none"], ["not", "byres", "bychain", "first", "last", "chain", "authchain", "segid", "namesel", "gti", "resix", "resid", "authresid", "resname", "re", "x", "y", "z", "b", "icode", "name"], ["and", "or", "around", "saround"], eval_function=partial(self._selex_eval, _selex_info), left_associativity=left_associativity, debug=False, ) # fmt: on # evaluate the expression val = tree.evaluate(expression) # if we are not looking to select unstructured residues, remove any dummy # atoms. NOTE: making dummy atoms can still impact what structured atoms # are selected (e.g., consider `saround` relative to an unstructured residue) if not unstructured: val = { i for i in val if not hasattr(_selex_info["all_atoms"][i].atom, "dummy") } return val, _selex_info def save_selection( self, expression: Optional[str] = None, gti: Optional[List[int]] = None, selname: str = "_default", allow_unstructured=False, left_associativity: bool = True, ): """Performs a selection on the System according to the given selection string and saves the indices of residues involved in the result (global template indices) under the given name. Args: expression (str): (optional) selection expression. gti (list of int): (optional) list of gti to define selection expression selname (str): selection name. allow_unstructured (bool): If True (default is False), will allow unstructured residues to be selected. left_associativity (bool, optional): determines whether operators in the expression are left-associative. """ if gti is not None: if expression is not None: warnings.warn( f"Expression and gti are both not null, expression will be ignored" f" and gti will be used!" ) result = sorted(gti) else: result = self.select_residues( expression, allow_unstructured=allow_unstructured, left_associativity=left_associativity, gti=True, ) # save the list of gti's self._selections[selname] = result def get_selected(self, selname: str = "_default"): """Returns the list of gti saved under the specified name. Args: selname (str): selection name. Returns: List of global template indices. """ if selname not in self._selections: raise Exception( f"selection by name '{selname}' does not exist in the System" ) return self._selections[selname] def has_selection(self, selname: str = "_default"): """Returns whether the given named selection exists. Args: selname (str): selection name. Returns: Whether the selection exists in the System. """ return selname in self._selections def get_selection_names(self): """Returns the list of all currently stored named selections.""" return list(self._selections.keys()) def remove_selection(self, selname: str = "_default"): """Deletes the selection under the specified name. Args: selname (str): selection name. """ if selname not in self._selections: raise Exception( f"selection by name '{selname}' does not exist in the System" ) del self._selections[selname] def _selex_eval(self, _selex_info, op: str, left, right): def _is_numeric(string: str) -> bool: try: float(string) return True except ValueError: return False def _is_int(string: str) -> bool: try: int(string) return True except ValueError: return False def _unpack_operands(operands, dests): assert len(operands) == len(dests) unpacked = [None] * len(operands) succ = True for i, (operand, dest) in enumerate(zip(operands, dests)): if dest is None: if operand is not None: succ = False break elif dest == "result": if not (isinstance(operand, dict) and "result" in operand): succ = False break unpacked[i] = operand["result"] elif dest == "string": if not (len(operand) == 1 and isinstance(operand[0], str)): succ = False break unpacked[i] = operand[0] elif dest == "strings": if not ( isinstance(operand, list) and all([isinstance(val, str) for val in operands]) ): succ = False break unpacked[i] = operands elif dest == "float": if not (len(operand) == 1 and _is_numeric(operand[0])): succ = False break unpacked[i] = float(operand[0]) elif dest == "floats": if not ( isinstance(operand, list) and all([_is_numeric(val) for val in operands]) ): succ = False break unpacked[i] = [float(val) for val in operands] elif dest == "range": test = _parse_range(operand) if test is None: succ = False break unpacked[i] = test elif dest == "int": if not (len(operand) == 1 and _is_int(operand[0])): succ = False break unpacked[i] = int(operand[0]) elif dest == "ints": if not ( isinstance(operand, list) and all([_is_int(val) for val in operands]) ): succ = False break unpacked[i] = [int(val) for val in operands] elif dest == "int_range": test = _parse_int_range(operand) if test is None: succ = False break unpacked[i] = test elif dest == "int_range_string": test = _parse_int_range(operand, string=True) if test is None: succ = False break unpacked[i] = test return unpacked, succ def _parse_range(operands: list): """Parses range information given a list of operands that were originally separated by spaces. Allowed range expressiosn are of the form: `< n`, `> n`, `n:m` with optional spaces allowed between operands.""" if not ( isinstance(operands, list) and all([isinstance(opr, str) for opr in operands]) ): return None operand = "".join(operands) if operand.startswith(">") or operand.startswith("<"): if not _is_numeric(operand[1:]): return None num = float(operand[1:]) if operand.startswith(">"): test = lambda x, cut=num: x > cut else: test = lambda x, cut=num: x < cut elif ":" in operand: parts = operand.split(":") if (len(parts) != 2) or not all([_is_numeric(p) for p in parts]): return None parts = [float(p) for p in parts] test = lambda x, lims=parts: lims[0] < x < lims[1] elif _is_numeric(operand): target = float(operand) test = lambda x, t=target: x == t else: return None return test def _parse_int_range(operands: list, string: bool = False): """Parses range of integers information given a list of operands that were originally separated by spaces. Allowed range expressiosn are of the form: `n`, `n-m`, `n+m`, with optional spaces allowed anywhere and combinations also allowed (e.g., "n+m+s+r-p+a").""" if not ( isinstance(operands, list) and all([isinstance(opr, str) for opr in operands]) ): return None operand = "".join(operands) operands = operand.split("+") ranges = [] for operand in operands: m = re.fullmatch("(.*\d)-(.+)", operand) if m: if not all([_is_int(g) for g in m.groups()]): return None r = range(int(m.group(1)), int(m.group(2)) + 1) ranges.append(r) else: if not _is_int(operand): return None if string: ranges.append(set([operand])) else: ranges.append(set([int(operand)])) if string: ranges = [[str(x) for x in r] for r in ranges] test = lambda x, ranges=ranges: any([x in r for r in ranges]) return test # evaluate expression and store result in list `result` result = set() if op in ("and", "or"): (Si, Sj), succ = _unpack_operands([left, right], ["result", "result"]) if not succ: return None if op == "and": result = set(Si).intersection(set(Sj)) else: result = set(Si).union(set(Sj)) elif op == "not": (_, S), succ = _unpack_operands([left, right], [None, "result"]) if not succ: return None result = _selex_info["all_indices_set"].difference(S) elif op == "all": (_, _), succ = _unpack_operands([left, right], [None, None]) if not succ: return None result = _selex_info["all_indices_set"] elif op == "none": (_, _), succ = _unpack_operands([left, right], [None, None]) if not succ: return None elif op == "around": (S, rad), succ = _unpack_operands([left, right], ["result", "float"]) if not succ: return None # Convert to numpy for distance calculation atom_indices = np.asarray( [ ai.aix for ai in _selex_info["all_atoms"] for xi in ai.atom.locations() ] ) X_i = np.asarray( [ [xi.x, xi.y, xi.z] for ai in _selex_info["all_atoms"] for xi in ai.atom.locations() ] ) X_j = np.asarray( [ [xi.x, xi.y, xi.z] for j in S for xi in _selex_info["all_atoms"][j].atom.locations() ] ) D = np.sqrt(((X_j[np.newaxis, :, :] - X_i[:, np.newaxis, :]) ** 2).sum(-1)) ix_match = (D <= rad).sum(1) > 0 match_hits = atom_indices[ix_match] result = set(match_hits.tolist()) elif op == "saround": (S, srad), succ = _unpack_operands([left, right], ["result", "int"]) if not succ: return None for j in S: aj = _selex_info["all_atoms"][j] rj = aj.rix for ai in _selex_info["all_atoms"]: if aj.atom.residue.chain != ai.atom.residue.chain: continue ri = ai.rix if abs(ri - rj) <= srad: result.add(ai.aix) elif op == "byres": (_, S), succ = _unpack_operands([left, right], [None, "result"]) if not succ: return None gtis = set() for j in S: gtis.add(_selex_info["all_atoms"][j].rix) for a in _selex_info["all_atoms"]: if a.rix in gtis: result.add(a.aix) elif op == "bychain": (_, S), succ = _unpack_operands([left, right], [None, "result"]) if not succ: return None cixs = set() for j in S: cixs.add(_selex_info["all_atoms"][j].cix) for a in _selex_info["all_atoms"]: if a.cix in cixs: result.add(a.aix) elif op in ("first", "last"): (_, S), succ = _unpack_operands([left, right], [None, "result"]) if not succ: return None if op == "first": mi = min([_selex_info["all_atoms"][i].aix for i in S]) else: mi = max([_selex_info["all_atoms"][i].aix for i in S]) result.add(mi) elif op == "name": (_, name), succ = _unpack_operands([left, right], [None, "string"]) if not succ: return None for a in _selex_info["all_atoms"]: if a.atom.name == name: result.add(a.aix) elif op in ("re", "hyd"): if op == "re": (_, regex), succ = _unpack_operands([left, right], [None, "string"]) else: (_, _), succ = _unpack_operands([left, right], [None, None]) regex = "[0123456789]?H.*" if not succ: return None ex = re.compile(regex) for a in _selex_info["all_atoms"]: if a.atom.name is not None and ex.fullmatch(a.atom.name): result.add(a.aix) elif op in ("chain", "authchain", "segid"): (_, match_id), succ = _unpack_operands([left, right], [None, "string"]) if not succ: return None if op == "chain": prop = "cid" elif op == "authchain": prop = "authid" elif op == "segid": prop = "segid" for a in _selex_info["all_atoms"]: if getattr(a.atom.residue.chain, prop) == match_id: result.add(a.aix) elif op == "resid": (_, test), succ = _unpack_operands([left, right], [None, "int_range"]) if not succ: return None for a in _selex_info["all_atoms"]: if test(a.atom.residue.num): result.add(a.aix) elif op in ("resname", "icode"): (_, match_id), succ = _unpack_operands([left, right], [None, "string"]) if not succ: return None if op == "resname": prop = "name" elif op == "icode": prop = "icode" for a in _selex_info["all_atoms"]: if getattr(a.atom.residue, prop) == match_id: result.add(a.aix) elif op == "authresid": (_, test), succ = _unpack_operands( [left, right], [None, "int_range_string"] ) if not succ: return None for a in _selex_info["all_atoms"]: if test(a.atom.residue.authid): result.add(a.aix) elif op == "gti": (_, test), succ = _unpack_operands([left, right], [None, "int_range"]) if not succ: return None for a in _selex_info["all_atoms"]: if test(a.rix): result.add(a.aix) elif op in ("x", "y", "z", "b", "occ"): (_, test), succ = _unpack_operands([left, right], [None, "range"]) if not succ: return None prop = op if op == "b": prop = "B" for a in _selex_info["all_atoms"]: for loc in a.atom.locations(): if test(getattr(loc, prop)): result.add(a.aix) break elif op == "namesel": (_, selname), succ = _unpack_operands([left, right], [None, "string"]) if not succ: return None if selname not in self._selections: return None gtis = set(self._selections[selname]) for a in _selex_info["all_atoms"]: if a.rix in gtis: result.add(a.aix) else: return None return {"result": result} def __getitem__(self, chain_idx: int): """Returns the chain at the given index.""" return self.get_chain(chain_idx) def add_chain( self, cid: str, segid: str = None, authid: str = None, entity_id: int = None, auto_rename: bool = True, at: int = None, ): """Adds a new chain to the System and returns a reference to it. Args: cid (str): Chain ID. segid (str): Segment ID. authid (str): Author chain ID. entity_id (int, optional): Entity ID of the entity corresponding to this chain. auto_rename (bool, optional): If True, will pick a unique chain ID if the specified one clashes with an already existing chain. Returns: AtomView object corresponding to the index. """ if auto_rename: cid = self._pick_unique_chain_name(cid) if segid is None: segid = cid if authid is None: authid = cid if at is None: at = self.num_chains() self._chains.append({"cid": cid, "segid": segid, "authid": authid}) self._chain_entities.append(entity_id) else: self._chains.insert(at, {"cid": cid, "segid": segid, "authid": authid}) self._chain_entities.insert(at, entity_id) return ChainView(at, self) def _append_residue(self, name: str, num: int, authid: str, icode: str): """Add a new residue to the end this System. Internal method, do not use. Args: name (str): Residue name. num (int): Residue number (i.e., residue ID). authid (str): Author residue ID. icode (str): Insertion code. Returns: Global index to the newly added residue. """ self._chains.append_child( {"name": name, "resnum": num, "authresid": authid, "icode": icode} ) return len(self._residues) - 1 def _append_atom( self, name: str, het: bool, x: float = None, y: float = None, z: float = None, occ: float = None, B: float = None, alt: str = None, ): """Adds a new atom to the end of this System. Internal method, do not use. Args: name (str): Atom name. het (bool): Whether it is a hetero-atom. x, y, z (float): Atom location coordinates. occ (float): Occupancy. B (float): B-factor. alt (str): Alternative position character. Returns: Global index to the newly added atom. """ self._residues.append_child({"name": name, "het": het}) return len(self._atoms) - 1 def _append_location(self, x, y, z, occ, B, alt): """Adds a location to the end of this System. Internal method, do not use. Args: x, y, z (float): coordinates of the location. occ (float): occupancy for the location. B (float): B-factor for the location. alt (str): alternative location character. Returns: Global index to the newly added location. """ self._atoms.append_child({"coor": [x, y, z, occ, B], "alt": alt}) return len(self._locations) - 1 def add_new_entity(self, entity: SystemEntity, chain_indices: list): """Adds a new entity to the list contained within the System and assigns chains with provided indices to this entity. Args: entity (SystemEntity): The new entity to add to the System. chain_indices (list): a list of Chain indices for chains to assign to this entity. Returns: The entity ID of the newly added entity. """ new_entity_id = len(self._entities) while new_entity_id in self._entities: new_entity_id = new_entity_id + 1 self._entities[new_entity_id] = entity for ci in chain_indices: self._chain_entities[ci] = new_entity_id return new_entity_id def delete_entity(self, entity_id: int): """Deletes the entity with the specified ID. Takes care to unlink any chains belonging to this entity from it. Args: entity_id (int): Entity ID. """ chain_indices = self.get_chains_of_entity(entity_id) for ci in chain_indices: self._chain_entities[ci] = None del self._entities[entity_id] def _pick_unique_chain_name(self, hint: str, verbose=False): goodNames = list( "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" ) taken = set([chain.cid for chain in self.chains()]) # first try to pick a conforming chain name (single alpha-numeric character) for cid in [hint] + goodNames: if cid not in taken: return cid if verbose: warnings.warn( "ran out of reasonable single-letter chain names, will use more than one character (PDB sctructure may be repeating chain IDs upon writing, but should still have unique segment IDs)!" ) # if that does not work, get a longer chain name for i in range(-1, len(goodNames)): # first try to expand the original chain ID base = hint if i < 0 else goodNames[i : i + 1] if base == "": continue for k in range(1000): longName = f"{base}{k}" if longName not in taken: return longName raise Exception( "ran out of even multi-character chain names; PDB structure appears to have an enormous number of chains" ) def _ensure_unique_entity(self, ci: int): """Any time we need to update some piece of information about a Chain that relates to its entity (e.g., sequence info or hetero info), we cannot just update it directly because other Chains may be pointing to the same entity. This function checks for any other chains pointing to the same entity as the specified chain, and (if so) assigns the given chain to a new (duplicate) entity and returns its new ID. This clears the way updates of this Chain's entity. Args: ci (int): Index of the Chain for which we are trying to update entity information. Returns: entity ID for either a newly created entity mapped to the Chain or its initial entity ID if no other chains point to the same entity. """ chain = self.get_chain(ci) entity_id = chain.get_entity_id() if entity_id is None: return entity_id # see if any other chains point to the same entity unique = True for other in self.chains(): if (other != chain) and (entity_id == other.get_entity_id()): unique = False break if unique: return entity_id # if so, we need to make a new entity and point the chain to it new_entity = copy.deepcopy(self._entities[entity_id]) new_entity_id = self.add_new_entity(new_entity, [ci]) return new_entity_id def num_chains(self): """Returns the number of chains in the System.""" return len(self._chains) def num_chains_of_entity(self, entity_id: int): """Returns the number of chains of a given entity. Args: entity_id (int): Entity ID. Returns: number of chains mapping to the entity. """ return sum([entity_id == eid for eid in self._chain_entities]) def num_molecules_of_entity(self, entity_id: int): if self._entities[entity_id].is_polymer(): return self.num_chains_of_entity(entity_id) cixs = [ci for (ci, id) in enumerate(self._chain_entities) if id == entity_id] return sum([self[ci].num_residues() for ci in cixs]) def num_entities(self): """Returns the number of entities in the System.""" return len(self._entities) def num_residues(self): """Returns the number of residues in the System.""" return len(self._residues) def num_structured_residues(self): """Returns the number of residues with any structure information.""" return sum([chain.num_structured_residues() for chain in self.chains()]) def num_atoms(self): """Returns the number of atoms in the System.""" return len(self._atoms) def num_structured_atoms(self): """Returns the number of atoms with any location information.""" num = 0 for chain in self.chains(): for residue in chain.residues(): for atom in residue.atoms(): num = num + (atom.num_locations() > 0) return num def num_atom_locations(self): """Returns the number of atom locations. Note that an atom can have multiple (alternative) locations and this functions counts all. """ return len(self._locations) def num_models(self): """Returns the number of models in the System. A model is effectively a conformation of the molecular system and each System object can have an arbitrary number of different conformations. """ return len(self._extra_models) + 1 def swap_model(self, i: int): """Swaps the model at index `i` with the current model (i.e., the model at index 0). Args: i (int): Model index """ if i == 0: return if i < 0 or i >= self.num_models(): raise Exception(f"model index {i} out of range") tmp = self._locations self._locations = self._extra_models[i - 1] self._extra_models[i - 1] = tmp def add_model(self, other: System): """Adds a new model to the System by taking the current model from the specified System `other`. Note that `other` and the present System must have the same number of atom locations of matching atom and residue names. Args: other (System): The System to take the model from. """ if len(self._locations) != len(other._locations): raise Exception( f"System has {len(self._locations)} atom locations while {len(other._locations)} were provided" ) self._extra_models.append(other._locations.copy()) self._extra_models[-1].set_parent(self._atoms) def add_model_from_X(self, X: torch.Tensor): """Adds a new model to the System with given coordinates. Args: X (torch.Tensor): Coordinate tensor of shape `(residues, atoms (4 or 14), coordinates (3))` """ if len(self._locations) != X.numel() / 3: raise Exception( f"System has {len(self._locations)} atom locations while provided tensor shape is {X.shape}" ) X = X.detach().cpu() self._extra_models.append(self._locations.copy()) self._extra_models[-1]["coor"][:, 0:3] = X.flatten(0, 1) return None def num_assemblies(self): """Returns the number of biological assemblies defined in this System.""" return len(self._assembly_info.assemblies) @staticmethod def from_CIF_string(cif_string: str): """Initializes and returns a System object from a CIF string.""" import io f = io.StringIO(cif_string) return System._read_cif(f)[0] @staticmethod def from_CIF(input_file: str): """Initializes and returns a System object from a CIF file.""" f = open(input_file, "r") return System._read_cif(f)[0] @staticmethod def _read_cif(f, strict=False): def _warn_or_error(strict: bool, msg: str): if strict: raise Exception(msg) else: warnings.warn(msg) is_read = { part: False for part in ["coors", "entities", "sequence", "entity_poly"] } category = "" (in_loop, success) = (False, True) peeked = sp.PeekedLine("", 0) # number of molecules per entity prescribed in the CIF file num_of_mols = dict() system = System("system") while sp.peek_line(f, peeked): if peeked.line.startswith("#"): # nothing to do, skip comments sp.advance(f, peeked) elif peeked.line.startswith("data_"): # nothing to do, this is the beginning of the file sp.advance(f, peeked) elif peeked.line.startswith("loop_"): in_loop = True category = "" sp.advance(f, peeked) else: (cat, name, val) = ("", "", "") if peeked.line.startswith("_"): (cat, name, val) = sp.star_item_parse(peeked.line) if cat != category: if category != "": in_loop = False category = cat if (cat == "_entry") and (name == "id"): if val != "": system.name = val sp.advance(f, peeked) elif cat == "_entity_poly": if is_read["entity_poly"]: raise Exception("entity_poly block encountered multiple times") tab = sp.star_read_data(f, ["entity_id", "type"], in_loop) for row in tab: ent_id = int(row[0]) - 1 if ent_id not in system._entities: system._entities[ent_id] = SystemEntity( None, None, row[1], None, None ) else: system._entities[ent_id]._polymer_type = row[1] is_read["entity_poly"] = True elif cat == "_entity": if is_read["entities"]: raise Exception( f"entities block encountered multiple times: {peeked.line}" ) tab = sp.star_read_data( f, ["id", "type", "pdbx_description", "pdbx_number_of_molecules"], in_loop, ) for row in tab: ent_id = int(row[0]) - 1 if ent_id not in system._entities: system._entities[ent_id] = SystemEntity( row[1], row[2], None, None, None ) else: system._entities[ent_id]._type = row[1] system._entities[ent_id]._desc = row[2] if row[3].isnumeric(): num_of_mols[ent_id] = int(row[3]) is_read["entities"] = True elif cat == "_entity_poly_seq": if is_read["sequence"]: raise Exception(f"sequence block encountered multiple times") tab = sp.star_read_data( f, ["entity_id", "num", "mon_id", "hetero"], in_loop ) (seq, het) = ([], []) for i in range(len(tab)): # accumulate sequence information until we reach the end or a new entity ID seq.append(tab[i][2]) het.append(tab[i][3].startswith("y")) if (i == len(tab) - 1) or (tab[i][0] != tab[i + 1][0]): ent_id = int(tab[i][0]) - 1 system._entities[ent_id]._seq = seq system._entities[ent_id]._het = het (seq, het) = ([], []) is_read["sequence"] = True elif cat == "_pdbx_struct_assembly": tab = sp.star_read_data(f, ["id", "details"], in_loop) for row in tab: system._assembly_info.assemblies[row[0]] = {"details": row[1]} elif cat == "_pdbx_struct_assembly_gen": tab = sp.star_read_data( f, ["assembly_id", "oper_expression", "asym_id_list"], in_loop ) for row in tab: assembly = system._assembly_info.assemblies[row[0]] if "instructions" not in assembly: assembly["instructions"] = [] chain_ids = [cid.strip() for cid in row[2].strip().split(",")] assembly["instructions"].append( {"oper_expression": row[1], "chains": chain_ids} ) elif cat == "_pdbx_struct_oper_list": tab = sp.star_read_data( f, [ "id", "type", "name", "matrix[1][1]", "matrix[1][2]", "matrix[1][3]", "matrix[2][1]", "matrix[2][2]", "matrix[2][3]", "matrix[3][1]", "matrix[3][2]", "matrix[3][3]", "vector[1]", "vector[2]", "vector[3]", ], in_loop, ) for row in tab: system._assembly_info.operations[ row[0] ] = SystemAssemblyInfo.make_operation( row[1], row[2], row[3:12], row[12:15] ) elif cat == "_generate_selections": tab = sp.star_read_data(f, ["name", "indices"], in_loop) for row in tab: system._selections[row[0]] = [ int(gti.strip()) for gti in row[1].strip().split() ] elif cat == "_generate_labels": tab = sp.star_read_data(f, ["name", "index", "value"], in_loop) for row in tab: if row[0] not in system._labels: system._labels[row[0]] = dict() idx = int(row[1]) system._labels[row[0]][int(row[1])] = row[2] elif cat == "_atom_site": if is_read["coors"]: raise Exception(f"ATOM_SITE block encountered multiple times") # this section is special as it cannot have quoted blocks (because some atom names have the single quote character in them) tab = sp.star_read_data( f, [ "group_PDB", "id", "label_atom_id", "label_alt_id", "label_comp_id", "label_asym_id", "label_entity_id", "label_seq_id", "pdbx_PDB_ins_code", "Cartn_x", "Cartn_y", "Cartn_z", "occupancy", "B_iso_or_equiv", "pdbx_PDB_model_num", "auth_seq_id", "auth_asym_id", ], in_loop, cols=False, has_blocks=False, ) groupCol = 0 idxCol = 1 atomNameCol = 2 altIdCol = 3 resNameCol = 4 chainNameCol = 5 entityIdCol = 6 seqIdCol = 7 insCodeCol = 8 xCol = 9 yCol = 10 zCol = 11 occCol = 12 bCol = 13 modelCol = 14 authSeqIdCol = 15 authChainNameCol = 16 ( atom, residue, chain, prev_chain, prev_residue, prev_atom, prev_entity_id, prev_seq_id, prev_auth_seq_id, ) = (None, None, None, None, None, None, None, None, None) loc = None # first model location aIdx = 0 for i in range(len(tab)): if i == 0: first_model = tab[i][modelCol] prev_model = first_model elif (tab[i][modelCol] != prev_model) or ( tab[i][modelCol] != first_model ): if tab[i][modelCol] != prev_model: aIdx = 0 num_loc = system.num_atom_locations() # setting the default value to None allows us to tell when the # same coordinate in a subsequent model was not specified (e.g., # when an alternative coordinate is not specified) system._extra_models.append(system._new_locations()) prev_model = tab[i][modelCol] locations_generator = (l for l in system.locations()) loc = next(locations_generator, None) if aIdx >= num_loc: _warn_or_error( strict, f"at atom id: {tab[i][idxCol]} -- too many atoms in model {tab[i][modelCol]} relative to first model {first_model}", ) success = False system._extra_models.clear() break # check that the atoms correspond same = ( (loc is not None) and (tab[i][chainNameCol] == loc.atom.residue.chain.cid) and (tab[i][resNameCol] == loc.atom.residue.name) and ( int( sp.star_value( tab[i][seqIdCol], loc.atom.residue.num ) ) == loc.atom.residue.num ) and (tab[i][atomNameCol] == loc.atom.name) ) if not same: _warn_or_error( strict, f"at atom id: {tab[i][idxCol]} -- atoms in model {tab[i][modelCol]} do not correspond exactly to atoms in first model", ) success = False system._extra_models.clear() break coor = [ float(tab[i][c]) for c in [xCol, yCol, zCol, occCol, bCol] ] system._extra_models[-1]["coor"][aIdx] = coor system._extra_models[-1]["alt"][aIdx] = sp.star_value( tab[i][altIdCol], " " )[0] aIdx = aIdx + 1 continue # new chain? if ( (chain is None) or (prev_entity_id != tab[i][entityIdCol]) or (tab[i][chainNameCol] != chain.cid) ): authid = ( tab[i][authChainNameCol] if (tab[i][authChainNameCol] != "") else tab[i][chainNameCol] ) chain = system.add_chain( tab[i][chainNameCol], tab[i][chainNameCol], authid, int(tab[i][entityIdCol]) - 1, ) # new residue if ( (residue is None) or (chain != prev_chain) or (prev_seq_id != tab[i][seqIdCol]) or (prev_auth_seq_id != tab[i][authSeqIdCol]) ): resnum = ( int(tab[i][seqIdCol]) if sp.star_value_defined(tab[i][seqIdCol]) else chain.num_residues() + 1 ) ri = system._append_residue( tab[i][resNameCol], resnum, tab[i][authSeqIdCol], sp.star_value(tab[i][insCodeCol], " ")[0], ) residue = ResidueView(ri, chain) # usually will be a new atom, but may be an alternative coordinate # TODO: this only covers cases where alternative atom coordinates are listed next to each other, # but sometimes they are not -- need to actively use the altIdCol information x, y, z, occ, B = [ float(tab[i][col]) for col in [xCol, yCol, zCol, occCol, bCol] ] alt = sp.star_value(tab[i][altIdCol], " ")[0] if ( (atom is None) or (residue != prev_residue) or (tab[i][atomNameCol] != atom.name) ): ai = system._append_atom( tab[i][atomNameCol], (tab[i][groupCol] == "HETATM") ) atom = AtomView(ai, residue) system._append_location(x, y, z, occ, B, alt) prev_chain = chain prev_residue = residue prev_entity_id = tab[i][entityIdCol] prev_seq_id = tab[i][seqIdCol] prev_auth_seq_id = tab[i][authSeqIdCol] is_read["coors"] = True else: sp.advance(f, peeked) # fill in any "missing" polymer chains (e.g., chains with no visible density # or known structure, but which are nevertheless present) for entity_id in num_of_mols: if system._entities[entity_id].is_polymer(): rem = num_of_mols[entity_id] - system.num_chains_of_entity(entity_id) for _ in range(rem): # the chain will get renamed to avoid clashes system.add_chain("A", None, None, entity_id, auto_rename=True) # fill in missing residues (i.e., those that exist in the entity but not # the atomistic section) for chain in system.chains(): entity = chain.get_entity() if not entity.is_polymer() or entity._seq is None: continue k = 0 for ri in range(len(entity._seq)): cur_res = chain.get_residue(k) if k < chain.num_residues() else None if (cur_res is None) or (cur_res.num > ri + 1): # insert new residue to correspond to entity monomer with index ri chain.add_residue(entity._seq[ri], ri + 1, str(ri + 1), " ", at=k) elif cur_res.num < ri + 1: _warn_or_error( strict, f"inconsistent numbering in chain {chain.cid}" ) break k = k + 1 # do an entity-to-structure sequence check for all chains for chain in system.chains(): if not chain.check_sequence(): _warn_or_error( strict, f"chain {chain.cid} did not pass sequence check against corresponding entity", ) system._reindex() return system, success @staticmethod def from_PDB_string(cif_string: str, options=""): """Initializes and returns a System object from a PDB string.""" import io f = io.StringIO(cif_string) sys = System._read_pdb(f, options) sys.name = "from_string" return sys @staticmethod def from_PDB(input_file: str, options=""): """Initializes and returns a System object from a PDB file.""" f = open(input_file, "r") sys = System._read_pdb(f, options) sys.name = input_file return sys @staticmethod def _read_pdb(f, strict=False, options=""): def _to_float(strval, default): v = default try: v = float(strval) except: pass return v last_resnum = None last_resname = None last_icode = None last_chain_id = None last_alt = None chain = None residue = None # flag to indicate that chain terminus was reached. Initialize to true so as to create a new chain upon reading the first atom. ter = True # various parsing options (the wonders of dealing with the good-old PDB format) # and any user-specified overrides options = options.upper() # use segment IDs to name chains instead of chain IDs? (useful when the latter # are absent OR when too many chains, so need multi-letter names) usese_gid = True if ("USESEGID" in options) else False # the PDB file was written by CHARMM (slightly different format) charmm_format = True if ("CHARMM" in options) else False # upon reading, convert from all-hydrogen topology (param22 and higher) to # the CHARMM19 united-atom topology (matters for HIS protonation states) charmm19_format = True if ("CHARMM19" in options) else False # make sure chain IDs are unique, even if they are not unique in the read file uniq_chain_ids = False if ("ALLOW DUPLICATE CIDS" in options) else True # rename CD in ILE to CD1 (as is standard in PDB, but not some MM packages) fix_Ile_CD = False if ("ALLOW ILE CD" in options) else True # consequtive residues that differ only in their insertion code will be treated # as separate residues icodes_as_sep_res = True # if true, will not pay attention to TER lines in deciding when chains end/begin ignore_ter = True if ("IGNORE-TER" in options) else False # report various warnings when weird things are found and fixed? verbose = False if ("QUIET" in options) else True chains_to_rename = [] # read line by line and build the System system = System("system") all_system = system model_index = 0 for line in f: line = line.strip() if line.startswith("ENDMDL"): # merge the last read model with the overall System if model_index: try: all_system.add_model(system) except Exception as e: warnings.warn( f"error when adding model {model_index + 1}: {str(e)}, skipping model..." ) system = System("system") model_index = model_index + 1 last_resnum = None last_resname = None last_icode = None last_chain_id = None last_alt = None chain = None residue = None continue if line.startswith("END"): break if line.startswith("MODEL"): # new model continue if line.startswith("TER") and not ignore_ter: ter = True continue if not (line.startswith("ATOM") or line.startswith("HETATM")): continue """ Now read atom record. Sometimes PDB lines are too short (if they do not contain some of the last optional columns). We don't want to read past the end of the string!""" line += " " * 100 atominx = int(line[6:11]) atomname = line[12:16].strip() alt = line[16:17] resname = line[17:21].strip() chain_id = line[21:22].strip() resnum = int(line[23:27]) if charmm_format else int(line[22:26]) icode = " " if charmm_format else line[26:27] x = float(line[30:38]) y = float(line[38:46]) z = float(line[46:54]) seg_id = line[72:76].strip() B = _to_float(line[60:66], 0.0) occ = _to_float(line[54:60], 0.0) het = line.startswith("HETATM") # use segment ID's instead of chain ID's? if usese_gid: chain_id = seg_id elif (chain_id == "") and (len(seg_id) > 0) and seg_id[0].isalnum(): # use first character of segment name if no chain name is specified, a segment ID # is specified, and the latter starts with an alphanumeric character chain_id = seg_id[0:1] # create a new chain object, if necessary if (chain_id != last_chain_id) or ter: cid_used = system.get_chain_by_id(chain_id) is not None chain = system.add_chain(chain_id, seg_id, chain_id, auto_rename=False) # non-unique chains will be automatically renamed (unless the user specified not to rename chains), BUT we need to # remember the name that was actually read, since this name is what will be used to determine when the next chain comes if uniq_chain_ids and cid_used: chain.cid = chain.cid + f"|to rename {len(chains_to_rename)}" if model_index == 0: chains_to_rename.append(chain) if verbose: warnings.warn( "chain name '" + chain_id + "' was repeated while reading, will rename at the end..." ) # start to count residue numbers in this chain last_resnum = None last_resname = None ter = False if charmm19_format: if resname == "HSE": resname = "HSD" # neutral HIS, proton on ND1 if resname == "HSD": resname = "HIS" # neutral HIS, proton on NE2 if resname == "HSC": resname = "HSP" # doubley-protonated +1 HIS # many PDB files in the Protein Data Bank call the delta carbon of isoleucine CD1, but # the convention in basically all MM packages is to call it CD, since there is only one if fix_Ile_CD and (resname == "ILE") and (atomname == "CD"): atomname = "CD1" # if necessary, make a new residue really_new_atom = True # is this a truely new atom, as opposed to an alternative position? if ( (resnum != last_resnum) or (resname != last_resname) or (icodes_as_sep_res and (icode != last_icode)) ): # this corresponds to a case, where the alternative location flag is being used to # designate two (or more) different possible amino acids at a particular position # (e.g., where the density is not clear to assign one). In this case, we shall keep # only the first option, because we don't know any better. But we need to separate # this from the case, where we end up here because we are trying to separate residues # by insertion code. if ( (resnum == last_resnum) and (resname != last_resname) and (alt != last_alt) and (not icodes_as_sep_res or (icode == last_icode)) ): continue residue = chain.add_residue( resname, chain.num_residues() + 1, str(resnum), icode[0] ) elif alt != " ": # if this is not a new residue AND the alternative location flag is specified, # figure out if another location for this atom has already been given. If not, # then treat this as the "primary" location, and whatever other locations # are specified will be treated as alternatives. a = residue.find_atom(atomname) if a is not None: really_new_atom = False a.add_location(x, y, z, occ, B, alt[0]) # if necessary, make a new atom if really_new_atom: a = residue.add_atom(atomname, het, x, y, z, occ, B, alt[0]) # remember previous values for determining whether something interesting happens next last_resnum = resnum last_icode = icode last_resname = resname last_chain_id = chain_id last_alt = alt # take care of renaming any chains that had duplicate IDs for chain in chains_to_rename: parts = chain.cid.split("|") assert ( len(parts) > 1 ), "something went wrong when renaming a chain at the end of reading" name = all_system._pick_unique_chain_name(parts[0], verbose) chain.cid = name if len(name): chain.segid = name # add an entity for each chain (copy from chain information) for ci, chain in enumerate(all_system.chains()): seq = [None] * chain.num_residues() het = [None] * chain.num_residues() for ri, res in enumerate(chain.residues()): seq[ri] = res.name het[ri] = all(a.het for a in res.atoms()) entity_type, polymer_type = SystemEntity.guess_entity_and_polymer_type(seq) entity = SystemEntity( entity_type, f"chain {chain.cid}", polymer_type, seq, het ) all_system.add_new_entity(entity, [ci]) return all_system def to_CIF(self, output_file: str): """Writes the System to a CIF file.""" f = open(output_file, "w") self._write_cif(f) def to_CIF_string(self): """Returns a CIF string representing the System.""" import io f = io.StringIO("") self._write_cif(f) cif_str = f.getvalue() f.close() return cif_str def _write_cif(self, f): # fmt: off _specials_atom_names = [ "MG", "CL", "FE", "ZN", "MN", "NI", "SE", "CU", "BR", "CO", "AS", "BE", "RU", "RB", "ZR", "OS", "SR", "GD", "MO", "AU", "AG", "PT", "AL", "XE", "BE", "CS", "EU", "IR", "AM", "TE", "BA", "SB" ] # fmt: on _ambiguous_atom_names = ["CA", "CD", "NA", "HG", "PB"] def _guess_type(atom_name, res_name): if len(atom_name) > 0 and atom_name[0] == '"': atom_name = atom_name.replace('"', "") if atom_name[:2] in _specials_atom_names: return atom_name[:2] else: if atom_name in _ambiguous_atom_names and res_name == atom_name: return atom_name elif atom_name == "UNK": return "X" return atom_name[:1] entry_id = self.name.strip() if entry_id == "": entry_id = "system" f.write( "data_GNR8\n#\n" + "_entry.id " + sp.star_string_escape(entry_id) + "\n#\n" ) # write entities table sp.star_loop_header_write( f, "_entity", ["id", "type", "pdbx_description", "pdbx_number_of_molecules"] ) for id, entity in self._entities.items(): num_mol = self.num_molecules_of_entity(id) f.write( f"{id + 1} {sp.star_string_escape(entity._type)} {sp.star_string_escape(entity._desc)} {num_mol}\n" ) f.write("#\n") # write entity polymer sequences sp.star_loop_header_write( f, "_entity_poly_seq", ["entity_id", "num", "mon_id", "hetero"] ) for id, entity in self._entities.items(): if entity._seq is not None: for i, (res, het) in enumerate(zip(entity._seq, entity._het)): f.write(f"{id + 1} {i + 1} {res} {'y' if het else 'n'}\n") f.write("#\n") # write entity polymer types sp.star_loop_header_write(f, "_entity_poly", ["entity_id", "type"]) for id, entity in self._entities.items(): if entity.is_polymer(): f.write(f"{id + 1} {sp.star_string_escape(entity._polymer_type)}\n") f.write("#\n") if self.num_assemblies(): assemblies = self._assembly_info.assemblies ops = self._assembly_info.operations # assembly info table sp.star_loop_header_write(f, "_pdbx_struct_assembly", ["id", "details"]) for assembly_id, assembly in assemblies.items(): f.write(f"{assembly_id} {sp.star_string_escape(assembly['details'])}\n") f.write("#\n") # assembly generation instructions table sp.star_loop_header_write( f, "_pdbx_struct_assembly_gen", ["assembly_id", "oper_expression", "asym_id_list"], ) for assembly_id, assembly in assemblies.items(): for instruction in assembly["instructions"]: chain_list = ",".join([str(ci) for ci in instruction["chains"]]) f.write( f"{assembly_id} {sp.star_string_escape(instruction['oper_expression'])} {chain_list}\n" ) f.write("#\n") # symmetry operations table sp.star_loop_header_write( f, "_pdbx_struct_oper_list", [ "id", "type", "name", "matrix[1][1]", "matrix[1][2]", "matrix[1][3]", "matrix[2][1]", "matrix[2][2]", "matrix[2][3]", "matrix[3][1]", "matrix[3][2]", "matrix[3][3]", "vector[1]", "vector[2]", "vector[3]", ], ) for op_id, op in ops.items(): f.write( f"{op_id} {sp.star_string_escape(op['type'])} {sp.star_string_escape(op['name'])} " ) f.write( f"{float(op['matrix'][0][0]):g} {float(op['matrix'][0][1]):g} {float(op['matrix'][0][2]):g} " ) f.write( f"{float(op['matrix'][1][0]):g} {float(op['matrix'][1][1]):g} {float(op['matrix'][1][2]):g} " ) f.write( f"{float(op['matrix'][2][0]):g} {float(op['matrix'][2][1]):g} {float(op['matrix'][2][2]):g} " ) f.write( f"{float(op['vector'][0]):g} {float(op['vector'][1]):g} {float(op['vector'][2]):g}\n" ) f.write("#\n") sp.star_loop_header_write( f, "_atom_site", [ "group_PDB", "id", "label_atom_id", "label_alt_id", "label_comp_id", "label_asym_id", "label_entity_id", "label_seq_id", "pdbx_PDB_ins_code", "Cartn_x", "Cartn_y", "Cartn_z", "occupancy", "B_iso_or_equiv", "pdbx_PDB_model_num", "auth_seq_id", "auth_asym_id", "type_symbol", ], ) idx = -1 for model_index in range(self.num_models()): self.swap_model(model_index) for chain, entity_id in zip(self.chains(), self._chain_entities): authchainid = ( chain.authid if sp.star_value_defined(chain.authid) else chain.cid ) for residue in chain.residues(): authresid = ( residue.authid if sp.star_value_defined(residue.authid) else residue.num ) for atom in residue.atoms(): idx = idx + 1 for location in atom.locations(): # this means this coordinate was not specified for this model if not location.defined(): continue coor = location.coor_info f.write("HETATM " if atom.het else "ATOM ") f.write( f"{idx + 1} {atom.name} {sp.atom_site_token(location.alt)} " ) entity_id_str = ( f"{entity_id + 1}" if entity_id is not None else "?" ) f.write( f"{residue.name} {chain.cid} {entity_id_str} {residue.num} " ) f.write( f"{sp.atom_site_token(residue.icode)} {coor[0]:g} {coor[1]:g} {coor[2]:g} " ) f.write(f"{coor[3]:g} {coor[4]:g} {model_index} ") f.write( f"{authresid} {authchainid} {_guess_type(atom.name, residue.name)}\n" ) self.swap_model(model_index) f.write("#\n") # write out selections if len(self._selections): sp.star_loop_header_write(f, "_generate_selections", ["name", "indices"]) for name, indices in self._selections.items(): f.write( f"{sp.star_string_escape(name)} \"{' '.join([str(i) for i in indices])}\"\n" ) f.write("#\n") # write out labels if len(self._labels): sp.star_loop_header_write(f, "_generate_labels", ["name", "index", "value"]) for category, label_dict in self._labels.items(): for gti, label in label_dict.items(): f.write( f"{sp.star_string_escape(category)} {gti} {sp.star_string_escape(label)}\n" ) f.write("#\n") def to_PDB(self, output_file: str, options: str = ""): """Writes the System to a PDB file. Args: output_file (str): output PDB file name. options (str, optional): a string specifying various options for the writing process. The presence of certain sub-strings will trigger specific behaviors. Currently recognized sub-strings include "CHARMM", "CHARMM19", "CHARMM22", "RENUMBER", "NOEND", "NOTER", and "NOALT". This option is case-insensitive. """ f = open(output_file, "w") self._write_pdb(f, options) def to_PDB_string(self, options=""): """Writes the System to a PDB string. The options string has the same interpretation as with System::toPDB. """ import io f = io.StringIO("") self._write_pdb(f, options) cif_str = f.getvalue() f.close() return cif_str def _write_pdb(self, f, options=""): def _pdb_line(loc: AtomLocationView, ai: int, ri=None, rn=None, an=None): if rn is None: rn = loc.atom.residue.name if ri is None: ri = loc.atom.residue.num if an is None: an = loc.atom.name icode = loc.atom.residue.icode cid = loc.atom.residue.chain.cid if len(cid) > 1: cid = cid[0] segid = loc.atom.residue.chain.segid if len(segid) > 4: segid = segid[0:4] # atom name placement is different when it is 4 characters long if len(an) < 4: an_str = " %-.3s" % an else: an_str = "%.4s" % an # moduli are used to make sure numbers do not go over prescribe field widths # (this is not enforced by sprintf like with strings) line = ( "%6s%5d %-4s%c%-4s%.1s%4d%c %8.3f%8.3f%8.3f%6.2f%6.2f %.4s" % ( "HETATM" if loc.atom.het else "ATOM ", ai % 100000, an_str, loc.alt, rn, cid, ri % 10000, icode, loc.x, loc.y, loc.z, loc.occ, loc.B, segid, ) ) return line # various formating options (the wonders of dealing with the good-old PDB format) # and user-defined overrides options = options.upper() # the PDB file is intended for use in CHARMM or some other MM package charmmFormat = True if "CHARMM" in options else False # upon writing, convert from all-hydrogen topology (param 22 and higher) # to CHARMM19 united-atom topology (matters for HIS protonation states) charmm19Format = True if "CHARMM19" in options else False # upon writing, convert from CHARMM19 united-atom topology to all-hydrogen # param 22 topology (matters for HIS protonation states). Also works for # converting generic PDB files downloaded from the PDB. charmm22Format = True if "CHARMM22" in options else False # upon writing, renumber residue and atom names to start from 1 and go in order renumber = True if "RENUMBER" in options else False # do not write END at the end of the PDB file (e.g., useful for # concatenating chains from several structures) noend = True if "NOEND" in options else False # do not demark the end of each chain with TER (this is not _really_ # necessary, assuming chain names are unique, and it is sometimes nice # not to have extra lines other than atoms) noter = True if "NOTER" in options else False # write alternative locations by default writeAlt = True if "NOALT" in options else False # upon writing, convert to a generic PDB naming convention (no # protonation state specified for HIS) genericFormat = False if charmm19Format and charmm22Format: raise Exception( "CHARMM 19 and 22 formatting options cannot be specified together" ) atomIndex = 1 for ci, chain in enumerate(self.chains()): for ri, residue in enumerate(chain.residues()): for ai, atom in enumerate(residue.atoms()): # dirty details of formating for MM purposes converting atomname = atom.name resname = residue.name if charmmFormat: if (residue.name == "ILE") and (atom.name == "CD1"): atomname = "CD" if (atom.name == "O") and (ri == chain.num_residues() - 1): atomname = "OT1" if (atom.name == "OXT") and (ri == chain.num_residues() - 1): atomname = "OT2" if residue.name == "HOH": resname = "TIP3" if charmm19Format: if residue.name == "HSD": # neutral HIS, proton on ND1 resname = "HIS" if residue.name == "HSE": # neutral HIS, proton on NE2 resname = "HSD" if residue.name == "HSC": # doubley-protonated +1 HIS resname = "HSP" elif charmm22Format: """This will convert from CHARMM19 to CHARMM22 as well as from a generic downlodaded * PDB file to one ready for use in CHARMM22. The latter is because in the all-hydrogen * topology, HIS protonation state must be explicitly specified, so there is no HIS per se. * Whereas in typical downloaded PDB files HIS is used for all histidines (usually, one * does not even really know the protonation state). Whether sometimes people do specify it * nevertheless, and what naming format they use to do so, I am not sure (welcome to the * PDB file format). But certainly almost always it is just HIS. Below HIS is renamed to * HSD, the neutral form with proton on ND1. This is an assumption; not a perfect one, but * something needs to be assumed. Doing this renaming will make the PDB file work in MM * packages with the all-hydrogen model.""" if residue.name == "HSD": # neutral HIS, proton on NE2 resname = "HSE" if residue.name == "HIS": # neutral HIS, proton on ND1 resname = "HSD" if residue.name == "HSP": # doubley-protonated +1 HIS resname = "HSC" elif genericFormat: if residue.name in ["HSD", "HSP", "HSE", "HSC"]: resname = "HIS" if (residue.name == "ILE") and (atom.name == "CD"): atomname = "CD1" # write the atom line for li in range(atom.num_locations()): if renumber: f.write( _pdb_line( atom.get_location(li), atomIndex, ri=ri + 1, rn=resname, an=atomname, ) + "\n" ) else: f.write( _pdb_line( atom.get_location(li), atomIndex, rn=resname, an=atomname, ) + "\n" ) atomIndex = atomIndex + 1 if not noter and (ri == chain.num_residues() - 1): f.write("TER\n") if not noend and (ci == self.num_chains() - 1): f.write("END\n") def canonicalize_protein( self, level=2, drop_coors_unknowns=False, drop_coors_missing_backbone=False, filter_by_entity=False, ): """Canonicalize the calling System object (in place) by assuming that it represents a protein molecular system. Different canonicalization rigor and options can be specified but are all optional. Args: level (int): Canonicalization level that determines which nonstandard-to-standard residue mappings are performed. Possible values are 1, 2 or 3, with 2 being the default and higher values meaning more rigorous (and less conservative) canonicalization. With level 1, only truly equivalent mappings are performed (e.g., different His protonation states are mapped to the canonical residue name HIS that does not specify protonation). Level 2 adds to this some less exact but still quite close mappings--i.e., seleno-methionine (MSE) and seleno- cystine (SEC) to methionine (MET) and cystine (CYS). Level 3 further adds even less equivalent but still reasonable mappings--i.e., phosphorylated SER, THR, TYR, and HIS to their unphosphorylated counterparts as well as S-oxy Cys to Cys. drop_coors_unknowns (bool, optional): if True, will discard structural information for all residues that are not natural or mappable under the current level. NOTE: any sequence record for these residues (i.e., if they are part of a polymer entity) will be preserved. drop_coors_missing_backbone (bool, optional): if True, will discard structural information for residues that do not have at least the N, CA, C, and O backbone atoms. Same note applies regarding the full sequence record as in the above. filter_by_entity (bool, optional): if True, will remove any chains that do not represent polymer/polypeptide entities. This is convenient for cases where a System object has both protein and non-protein components. However, depending on how the System object was generated, entity metadata may not have been filled, so applying this canonicalization approach will remove the entire structure. For this reason, the option is False by default. """ def _mod_to_standard_aa_mappings( less_standard: bool, almost_standard: bool, standard: bool ): # Perfectly corresponding to standard residues standard_map = {"HSD": "HIS", "HSE": "HIS", "HSC": "HIS", "HSP": "HIS"} # Almost perfectly corresponding to standard residues: # * MSE -- selenomethyonine; SEC -- selenocysteine almost_standard_map = {"MSE": "MET", "SEC": "CYS"} # A little less perfectly corresponding pairings, but can be acceptable (depends): # * HIP -- ND1-phosphohistidine; SEP -- phosphoserine; TPO -- phosphothreonine; # * PTR -- o-phosphotyrosine. less_standard_map = { "HIP": "HIS", "CSX": "CYS", "SEP": "SER", "TPO": "THR", "PTR": "TYR", } ret = dict() if standard: ret.update(standard_map) if almost_standard: ret.update(almost_standard_map) if less_standard: ret.update(less_standard_map) return ret def _to_standard_aa_mappings( less_standard: bool, almost_standard: bool, standard: bool ): # get the mapping between modifications and their corresponding standard forms mapping = _mod_to_standard_aa_mappings( less_standard, almost_standard, standard ) # add mapping between standard names and themselves import chroma.utility.polyseq as polyseq for aa in polyseq.canonical_amino_acids(): mapping[aa] = aa return mapping less_standard, almost_standard, standard = False, False, False if level == 3: less_standard, almost_standard, standard = True, True, True elif level == 2: less_standard, almost_standard, standard = False, True, True elif level == 1: less_standard, almost_standard, standard = False, False, True else: raise Exception(f"unknown canonicalization level {level}") to_standard = _to_standard_aa_mappings(less_standard, almost_standard, standard) # NOTE: need to re-implement the canonicalization procedure such that it: # 1. checks to make sure entity sequence and structure sequence agree (error if not) # 2. goes over entities and looks for residues to rename, does the renaming on the entities # and all chains simultaneously (so that no new entities are created) # 3. then goes over the structured part and fixes atoms # For residue renamings, we will first record all edits and will perform them # afterwards in one go, so we can judge whether any new entities have to be # created. The dictionary `esidues_to_rename`` will be as follows: # entity_id: { # chain_index: [list of (residue index, rew name) tuples] # } chains_to_delete = [] residues_to_rename = dict() for ci, chain in enumerate(self.chains()): entity = chain.get_entity() if filter_by_entity: if ( (entity is None) or (entity._type != "polymer") or ("polypeptide" not in entity.polymer_time) ): chains_to_delete.append(chain) continue # iterate in reverse order so we can safely delete any residues we find necessary cleared_residues = 0 for residue in reversed(list(chain.residues())): aa = residue.name delete_atoms = False # canonicalize amino acid (delete structure if unknown, provided this was asked for) if aa in to_standard: aa_new = to_standard[aa] if aa != aa_new: # edit any atoms to reflect the mutation if ( (aa == "HSD") or (aa == "HSE") or (aa == "HSC") or (aa == "HSP") ) and (aa_new == "HIS"): pass elif ((aa == "MSE") and (aa_new == "MET")) or ( (aa == "SEC") and (aa_new == "CYS") ): SE = residue.find_atom("SE") if SE is not None: if aa == "MSE": SE.residue.rename("SD") else: SE.residue.rename("SG") elif ( ((aa == "HIP") and (aa_new == "HIS")) or ((aa == "SEP") and (aa_new == "SER")) or ((aa == "TPO") and (aa_new == "THR")) or ((aa == "PTR") and (aa_new == "TYR")) ): # delete the phosphate group for atomname in ["P", "O1P", "O2P", "O3P", "HOP2", "HOP3"]: a = residue.find_atom(atomname) if a is not None: a.delete() elif (aa == "CSX") and (aa_new == "CYS"): a = residue.find_atom("OD") if a is not None: a.delete() # record residue renaming operation to be done later entity_id = chain.get_entity_id() if entity_id is None: residue.rename(aa_new) else: if entity_id not in residues_to_rename: residues_to_rename[entity_id] = dict() if ci not in residues_to_rename[entity_id]: residues_to_rename[entity_id][ci] = list() residues_to_rename[entity_id][ci].append( (residue.get_index_in_chain(), aa_new) ) else: if aa == "ARG": A = {an: None for an in ["CD", "NE", "CZ", "NH1", "NH2"]} for an in A: atom = residue.find_atom(an) if atom is not None and atom.num_locations(): A[an] = atom.get_location(0) if all([a is not None for n, a in A.items()]): dihe1 = System.dihedral( A["CD"], A["NE"], A["CZ"], A["NH1"] ) dihe2 = System.dihedral( A["CD"], A["NE"], A["CZ"], A["NH2"] ) if abs(dihe1) > abs(dihe2): A["NH1"].name = "NH2" A["NH2"].name = "NH1" elif drop_coors_unknowns: delete_atoms = True if not drop_coors_missing_backbone: if not delete_atoms and not residue.has_full_backbone(): delete_atoms = True if delete_atoms: residue.delete_atoms() cleared_residues += 1 # If we have deleted all residues in this chain, then this is probably not # a protein chain, so get rid of it. Unless we are asked to pay attention to # the entity type (i.e., whether it is peptidic), in which case the decision # of whether to keep the chain would have been made previously. if ( not filter_by_entity and (cleared_residues != 0) and (cleared_residues == chain.num_residues()) ): chains_to_delete.append(chain) # rename residues differently depending on whether all chains of a given entity # have the same set of renamings for entity_id, ops in residues_to_rename.items(): chain_indices = set(ops.keys()) entity_chains = set(self.get_chains_of_entity(entity_id, by="index")) unique_renames = set([tuple(v) for v in ops.values()]) fork = True if (chain_indices == entity_chains) and (len(unique_renames) == 1): # we can rename without updating entities, because all entity chains are updated the same way fork = False for ci, renames in ops.items(): chain = self.get_chain(ci) for ri, new_name in renames: chain.get_residue(ri).rename(new_name, fork_entity=fork) # now delete any chains for chain in reversed(chains_to_delete): chain.delete() self._reindex() def sequence(self, format="three-letter-list"): """Returns the full sequence of this System, concatenated over all chains in their order within the System. Args: format (str): sequence format. Possible options are either "three-letter-list" (default) or "one-letter-string". Returns: List (default) or string. """ if format == "three-letter-list": seq = [] else: seq = "" for chain in self.chains(): seq = seq + chain.sequence(format) return seq @staticmethod def distance(a1: AtomLocationView, a2: AtomLocationView): """Computes the distance between atom locations `a1` and `a2`.""" v21 = a1.coors - a2.coors return np.linalg.norm(v21) @staticmethod def angle( a1: AtomLocationView, a2: AtomLocationView, a3: AtomLocationView, radians=False ): """Computes the angle formed by three 3D points represented by AtomLocationView objects. Args: a1, a2, a3 (AtomLocationView): three 3D points. radian (bool, optional): if True (default False), will return the angle in radians. Otherwise, in degrees. Returns: Angle `a1`-`a2`-`a3`. """ v21 = a1.coors - a2.coors v23 = a3.coors - a2.coors v21 = v21 / np.linalg.norm(v21) v23 = v23 / np.linalg.norm(v23) c = np.dot(v21, v23) return np.arctan2(np.sqrt(1 - c * c), c) * (1 if radians else 180.0 / np.pi) @staticmethod def dihedral( a1: AtomLocationView, a2: AtomLocationView, a3: AtomLocationView, a4: AtomLocationView, radians=False, ): """Computes the dihedral angle formed by four 3D points represented by AtomLocationView objects. Args: a1, a2, a3, a4 (AtomLocationView): four 3D points. radian (bool, optional): if True (default False), will return the angle in radians. Otherwise, in degrees. Returns: Dihedral angle `a1`-`a2`-`a3`-`a4`. """ AB = a1.coors - a2.coors CB = a3.coors - a2.coors DC = a4.coors - a3.coors if min([np.linalg.norm(p) for p in [AB, CB, DC]]) == 0.0: raise Exception("some points coincide in dihedral calculation") ABxCB = np.cross(AB, CB) ABxCB = ABxCB / np.linalg.norm(ABxCB) DCxCB = np.cross(DC, CB) DCxCB = DCxCB / np.linalg.norm(DCxCB) # the following is necessary for values very close to 1 but just above dotp = np.dot(ABxCB, DCxCB) if dotp > 1.0: dotp = 1.0 elif dotp < -1.0: dotp = -1.0 angle = np.arccos(dotp) if np.dot(ABxCB, DC) > 0: angle *= -1 if not radians: angle *= 180.0 / np.pi return angle @staticmethod def protein_backbone_atom_type(atom_name: str, no_hyd=True, by_name=True): """Backbone atoms can be either nitrogens, carbons, oxigens, or hydrogens. Specifically, possible known names in each category are: 'N', 'NT' 'CA', 'C', 'CY', 'CAY' 'OY', 'O', 'OCT*', 'OXT', 'OT1', 'OT2' 'H', 'HY*', 'HA*', 'HN', 'HT*', '1H', '2H', '3H' """ array = ["N", "CA", "C", "O", "H"] if by_name else [0, 1, 2, 3, 4] if atom_name in ["N", "NT"]: return array[0] if atom_name == "CA": return array[1] if (atom_name == "C") or (atom_name == "CY"): return array[2] if atom_name in ["O", "OY", "OXT", "OT1", "OT2"] or atom_name.startswith("OCT"): return array[3] if not no_hyd: if atom_name in ["H", "HA", "HN"]: return array[4] if atom_name.startswith("HT") or atom_name.startswith("HY"): return array[4] # Rosetta's N-terinal amine has hydrogens named 1H, 2H, and 3H if ( atom_name.startswith("1H") or atom_name.startswith("2H") or atom_name.startswith("3H") ): return array[4] return None @dataclass class SystemEntity: """A molecular entity represented in a molecular system.""" _type: str _desc: str _polymer_type: str _seq: list _het: list def is_polymer(self): """Returns whether the entity represents a polymer.""" return self._type == "polymer" @classmethod def guess_entity_and_polymer_type(cls, seq: List): is_poly = np.mean([polyseq.is_polymer_residue(res, None) for res in seq]) > 0.8 polymer_type = None if is_poly: entity_type = "polymer" for ptype in polyseq.polymerType: if ( np.mean([polyseq.is_polymer_residue(res, ptype) for res in seq]) > 0.8 ): polymer_type = polyseq.polymer_type_name(ptype) break else: entity_type = "unknown" return entity_type, polymer_type @property def type(self): return self._type @property def description(self): return self._desc @property def polymer_type(self): return self._polymer_type @property def sequence(self): return self._seq @property def hetero(self): return self._het @dataclass class BaseView: """An abstract base "view" class for accessing different parts of System.""" _ix: int _parent: object def get_index(self): """Return the index of this atom location in its System.""" return self._ix def is_valid(self): return self._ix >= 0 and self._parent is not None def _delete(self): at = self._ix - self.parent._siblings.child_index(self.parent._ix, 0) self.parent._siblings.delete_child(self.parent._ix, at) @property def parent(self): return self._parent @dataclass class ChainView(BaseView): """A Chain view, allowing hierarchical exploration and editing.""" def __init__(self, ix: int, system: System): self._ix = ix self._parent = system self._siblings = system._chains def __str__(self): return f"{self.cid} ({self.segid}/{self.authid}) -> {str(self.system)}" def residues(self): for rn in range(self.num_residues()): ri = self._siblings.child_index(self._ix, rn) yield ResidueView(ri, self) def num_residues(self): """Returns the number of residues in the Chain.""" return self._siblings.num_children(self._ix) def num_structured_residues(self): return sum([res.has_structure() for res in self.residues()]) def num_atoms(self): return sum([res.num_atoms() for res in self.residues()]) def num_atom_locations(self): return sum([res.num_atom_locations() for res in self.residues()]) def sequence(self, format="three-letter-list"): """Returns the sequence of this chain. See `System::sequence()` for possible formats. """ if format == "three-letter-list": seq = [None] * self.num_residues() for ri, residue in enumerate(self.residues()): seq[ri] = residue.name return seq elif format == "one-letter-string": import chroma.utility.polyseq as polyseq seq = [None] * self.num_residues() for ri, residue in enumerate(self.residues()): seq[ri] = polyseq.to_single(residue.name) return "".join(seq) else: raise Exception(f"unknown sequence format {format}") def get_residue(self, ri: int): """Get the residue at the specified index within the Chain. Args: ri (int): Residue index within the Chain. Returns: ResidueView object corresponding to the residue in question. """ if ri < 0 or ri >= self.num_residues(): raise Exception( f"residue index {ri} out of range for Chain, which has {self.num_residues()} residues" ) ri = self._siblings.child_index(self._ix, ri) return ResidueView(ri, self) def get_residue_index(self, residue: ResidueView): """Get the index of the given residue in this Chain.""" return residue._ix - self._siblings.child_index(self._ix, 0) def get_atom(self, aidx: int): """Get the atom at index `aidx` within this chain.""" if aidx < 0: raise Exception(f"negative atom index: {aidx}") off = 0 for residue in self.residues(): na = residue.num_atoms() if aidx < off + na: return residue.get_atom(aidx - off) off = off + na raise Exception( f"atom index {aidx} out of range for System, which has {self.num_atoms()} atoms" ) def get_atoms(self): """Return a list of all atoms in this chain.""" atoms_views = [] for residue in self.residues(): atoms_views.extend(residue.get_atoms()) return atoms_views def __getitem__(self, res_idx: int): return self.get_residue(res_idx) def get_entity_id(self): """Return the entity ID corresponding to this chain.""" return self.system._chain_entities[self._ix] def get_entity(self): """Return the entity this chain belongs to.""" entity_id = self.get_entity_id() if entity_id is None: return None return self.system._entities[entity_id] def check_sequence(self): """Compare the list of residue names of this chain to the corresponding entity sequence record.""" entity = self.get_entity() if entity is not None and entity.is_polymer(): if self.num_residues() != len(entity._seq): return False for res, ent_aan in zip(self.residues(), entity._seq): if res.name != ent_aan: return False return True def add_residue(self, name: str, num: int, authid: str, icode: str = " ", at=None): """Add a new residue to this chain. Args: name (str): Residue name. num (int): Residue number (i.e., residue ID). authid (str): Author residue ID. icode (str): Insertion code. at (int, optional): Index at which to insert the residue. Default is to append to the end of the chain (i.e., equivalent of ``at` being equal to the present length of the chain). """ if at is None: at = self.num_residues() ri = self._siblings.insert_child( self._ix, at, {"name": name, "resnum": num, "authresid": authid, "icode": icode}, ) return ResidueView(ri, self) def delete(self, keep_entity=False): """Deletes this Chain from its System. Args: keep_entity (bool, optional): If False (default) and if the chain being deleted happens to be the last representative of the entity it belongs to, the entity will be deleted. If True, the entity will always be kept. """ # delete the mention of the chain from assembly information self.system._assembly_info.delete_chain(self.cid) # optionally, delete the corresponding entity if no other chains point to it if not keep_entity: eid = self.get_entity_id() if self.system.num_chains_of_entity(eid) == 0: self.system.delete_entity(eid) self.system._chain_entities.pop(self._ix) self._siblings.delete(self._ix) self._ix = -1 # invalidate the view @property def system(self): return self._parent @property def cid(self): return self._siblings["cid"][self._ix] @property def segid(self): return self._siblings["segid"][self._ix] @property def authid(self): return self._siblings["authid"][self._ix] @cid.setter def cid(self, val): self._siblings["cid"][self._ix] = val @segid.setter def segid(self, val): self._siblings["segid"][self._ix] = val @authid.setter def authid(self, val): self._siblings["authid"][self._ix] = val @dataclass class ResidueView(BaseView): """A Residue view, allowing hierarchical exploration and editing.""" def __init__(self, ix: int, chain: ChainView): self._ix = ix self._parent = chain self._siblings = chain.system._residues def __str__(self): return f"{self.name} {self.num} ({self.authid}) -> {str(self.chain)}" def atoms(self): off = self._siblings.child_index(self._ix, 0) for an in range(self.num_atoms()): yield AtomView(off + an, self) def num_atoms(self): return self._siblings.num_children(self._ix) def num_atom_locations(self): return sum([a.num_locations() for a in self.atoms()]) def has_structure(self): """Returns whether the atom has any structural information (i.e., one or more locations).""" for a in self.atoms(): if a.num_locations(): return True return False def get_atom(self, ai: int): """Get the atom at the specified index within the Residue. Args: atom_idx (int): Atom index within the Residue. Returns: AtomView object corresponding to the atom in question. """ if ai < 0 or ai >= self.num_atoms(): raise Exception( f"atom index {ai} out of range for Residue, which has {self.num_atoms()} atoms" ) ai = self._siblings.child_index(self._ix, ai) return AtomView(ai, self) def get_atom_index(self, atom: AtomView): """Get the index of the given atom in this Residue.""" return atom._ix - self._siblings.child_index(self._ix, 0) def find_atom(self, name): """Find and return the first atom (as AtomView object) with the given name within the Residue or None.""" for atom in self.atoms(): if atom.name == name: return atom return None def __getitem__(self, atom_idx: int): return self.get_atom(atom_idx) def get_index_in_chain(self): """Return the index of the Residue in its parent Chain.""" return self.chain.get_residue_index(self) def rename(self, new_name: str, fork_entity=True): """Assigns the residue a new name with all proper updates. Args: new_name (str): New residue name. fork_entity (bool, optional): If True (default) and if parent chain corresponds to an entity that has other chains associated with it and there is a real renaming (i.e., the old name is not the same as the new name), will make a new (duplicate) entity for to this chain and will edit the new one, leaving the old one unchanged. If False, will not perform this regardless. NOTE: setting this to False can create an inconsistent state between chain and entity sequence information. """ entity_id = self.chain.get_entity_id() if entity_id is not None: entity = self.system._entities[entity_id] ri = self.get_index_in_chain() if fork_entity and (entity._seq[ri] != new_name): ci = self.chain.get_index() entity_id = self.system._ensure_unique_entity(ci) entity = self.system._entities[entity_id] entity._seq[ri] = new_name self._siblings["name"][self._ix] = new_name def add_atom( self, name: str, het: bool, x: float = None, y: float = None, z: float = None, occ: float = 1.0, B: float = 0.0, alt: str = " ", at=None, ): """Adds a new atom to the residue (appending it at the end) and returns an AtomView to it. If atom location information is specified, will also add a location to the atom. Args: name (str): Atom name. het (bool): Whether it is a hetero-atom. x, y, z (float): Atom location coordinates. occ (float): Occupancy. B (float): B-factor. alt (str): Alternative position character. at (int, optional): Index at which to insert the atom. Default is to append to the end of the residue (i.e., equivalent of ``at` being equal to the number of atoms in the residue). Returns: AtomView object corresponding to the newly added atom. """ if at is None: at = self.num_atoms() ai = self._siblings.insert_child(self._ix, at, {"name": name, "het": het}) atom = AtomView(ai, self) # now add a location to this atom if x is not None: atom.add_location(x, y, z, occ, B, alt) return atom def delete(self, fork_entity=True): """Deletes this residue from its Chain/System. Args: fork_entity (bool, optional): If True (default) and if parent chain corresponds to an entity that has other chains associated with it, will make a new (duplicate) entity for to this chain and will edit the new one, leaving the old one unchanged. If False, will not perform this. NOTE: setting this to False can create an inconsistent state between chain and entity sequence information. """ # update the entity (duplicating, if necessary) entity_id = self.chain.get_entity_id() if entity_id is not None: entity = self.system._entities[entity_id] ri = self.get_index_in_chain() if fork_entity: ci = self.chain.get_index() entity_id = self.system._ensure_unique_entity(ci) entity = self.system._entities[entity_id] entity._seq.pop(ri) # delete the residue self._delete() self._ix = -1 # invalidate the view def delete_atoms(self, atoms=None): """Delete either the specified list of atoms or all atoms from the residue. Args: atoms (list, optional): List of AtomView objects corresponding to the atoms to delete. If not specified, will delete all atoms in the residue. """ if atoms is None: atoms = list(self.atoms()) for atom in reversed(atoms): if atom.residue != self: raise Exception(f"Atom {atom} does not belong to Residue {self}") atom.delete() @property def chain(self): return self._parent @property def system(self): return self.chain.system @property def name(self): return self._siblings["name"][self._ix] @property def num(self): return self._siblings["resnum"][self._ix] @property def authid(self): return self._siblings["authresid"][self._ix] @property def icode(self): return self._siblings["icode"][self._ix] def get_backbone(self, no_hyd=True): """Assuming that this is a protein residue (i.e., an amino acid), returns the list of atoms corresponding to the residue's backbone, in the order: backbone amide (N), alpha carbon (CA), carbonyl carbon (C), carbonyl oxygen (O), and amide hydrogen (H, optional). Args: no_hyd (bool, optional): If True (default), will exclude the amide hydrogen and only return four atoms. If False, will include the amide hydrogen. Returns: A list with each entry being an AtomView object corresponding to the backbone atom in the order above or None if the atom does not exist in the residue. """ bb = [None] * (4 if no_hyd else 5) left = len(bb) for atom in self.atoms(): i = System.protein_backbone_atom_type(atom.name, no_hyd) if i is None or bb[i] is not None: continue bb[i] = atom left = left - 1 if left == 0: break return bb def has_full_backbone(self, no_hyd=True): """Assuming that this is a protein residue (i.e., an amino acid), returns whether the residue harbors a structurally defined backbone (i.e., has all backbone atoms each of which has location information). Args: no_hyd (bool, optional): If True (default), will ignore whether the amide hydrogen exists or not (if False will consider it). Returns: Boolean indicating whether there is a full backbone in the residue. """ bb = self.get_backbone(no_hyd) return all([(a is not None) and a.num_locations() for a in bb]) def delete_non_backbone(self, no_hyd=True): """Assuming that this is a protein residue (i.e., an amino acid), deletes all atoms except backbone atoms. Args: no_hyd (bool, optional): If True (default), will not consider the amide hydrogen as a backbone atom (if False will consider it). """ to_delete = [] for atom in self.atoms(): if System.protein_backbone_atom_type(atom.name, no_hyd) is None: to_delete.append(atom) self.delete_atoms(to_delete) @dataclass class AtomView(BaseView): """An Atom view, allowing hierarchical exploration and editing.""" def __init__(self, ix: int, residue: ResidueView): self._ix = ix self._parent = residue self._siblings = residue.system._atoms def __str__(self): string = self.name + (" (HET) " if self.het else " ") if self.num_locations() > 0: string = string + str(self.get_location(0)) string = string + f" ({self.num_locations()})" return string + " -> " + str(self.residue) def locations(self): off = self._siblings.child_index(self._ix, 0) for ln in range(self.num_locations()): yield AtomLocationView(off + ln, self) def num_locations(self): return self._siblings.num_children(self._ix) def __getitem__(self, loc_idx: int): return self.get_location(loc_idx) def get_location(self, li: int = 0): """Returns the (li+1)-th location of the atom.""" if li < 0 or li >= self.num_locations(): raise Exception( f"location index {li} out of range for Atom with {self.num_locations()} locations" ) li = self._siblings.child_index(self._ix, li) return AtomLocationView(li, self) def add_location(self, x, y, z, occ=1.0, B=0.0, alt=" ", at=None): """Adds a location to this atom, append it to the end. Args: x, y, z (float): coordinates of the location. occ (float): occupancy for the location. B (float): B-factor for the location. alt (str): alternative location character. at (int, optional): Index at which to insert the location. Default is to append at the end (i.e., equivalent of ``at` being equal to the current number of locations). """ if at is None: at = self.num_locations() li = self._siblings.insert_child( self._ix, at, {"coor": [x, y, z, occ, B], "alt": alt} ) return AtomLocationView(li, self) def delete(self): """Deletes this atom from its Residue/Chain/System.""" self._delete() self._ix = -1 # invalidate the view @property def residue(self): return self._parent @property def chain(self): return self.residue.chain @property def system(self): return self.chain.system @property def name(self): return self._siblings["name"][self._ix] @property def het(self): return self._siblings["het"][self._ix] """Location information getters and setters operate on the default (first) location for this atom and throw an index error if there are no locations.""" @property def x(self): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) return self.system._locations["coor"][ix, 0] @property def y(self): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) return self.system._locations["coor"][ix, 1] @property def z(self): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) return self.system._locations["coor"][ix, 2] @property def coors(self): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) return self.system._locations["coor"][ix, 0:3] @property def occ(self): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) return self.system._locations["coor"][ix, 3] @property def B(self): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) return self.system._locations["coor"][ix, 4] @property def alt(self): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) return self.system._locations["alt"][ix] @x.setter def x(self, val): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) self.system._locations["coor"][ix, 0] = val @y.setter def y(self, val): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) self.system._locations["coor"][ix, 1] = val @z.setter def z(self, val): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) self.system._locations["coor"][ix, 2] = val @occ.setter def occ(self, val): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) self.system._locations["coor"][ix, 3] = val @B.setter def B(self, val): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) self.system._locations["coor"][ix, 4] = val @alt.setter def alt(self, val): if self._siblings.num_children(self._ix) == 0: raise Exception("atom has no locations") ix = self._siblings.child_index(self._ix, 0) self.system._locations["alt"][ix] = val class DummyAtomView(AtomView): """An dummy Atom view that can be attached to a residue but that does not have any locations and with no other information.""" def __init__(self, residue: ResidueView): self._ix = -1 self._parent = residue def __str__(self): return "DUMMY -> " + str(self.residue) def locations(self): return yield def num_locations(self): return 0 def __getitem__(self, loc_idx: int): return None def get_location(self, li: int = 0): raise Exception(f"no locations in DUMMY atom") def add_location(self, x, y, z, occ, B, alt, at=None): raise Exception(f"can't add no locations to DUMMY atom") @property def residue(self): return self._parent @property def chain(self): return self.residue.chain @property def system(self): return self.chain.system @property def name(self): return None @property def het(self): return None @property def x(self): raise Exception(f"no coordinates in DUMMY atom") @property def y(self): raise Exception(f"no coordinates in DUMMY atom") @property def z(self): raise Exception(f"no coordinates in DUMMY atom") @property def occ(self): raise Exception(f"no occupancy in DUMMY atom") @property def B(self): raise Exception(f"no B-factor in DUMMY atom") @property def alt(self): raise Exception(f"no alt flag in DUMMY atom") @x.setter def x(self, val): raise Exception(f"can't set coordinate for DUMMY atom") @y.setter def y(self, val): raise Exception(f"can't set coordinate for DUMMY atom") @z.setter def z(self, val): raise Exception(f"can't set coordinate for DUMMY atom") @occ.setter def occ(self, val): raise Exception(f"can't set occupancy for DUMMY atom") @B.setter def B(self, val): raise Exception(f"can't set B-factor for DUMMY atom") @alt.setter def alt(self, val): raise Exception(f"can't set alt flag for DUMMY atom") @dataclass class AtomLocationView(BaseView): """An AtomLocation view, allowing hierarchical exploration and editing.""" def __init__(self, ix: int, atom: AtomView): self._ix = ix self._parent = atom self._siblings = atom.system._locations def __str__(self): return f"{self.x} {self.y} {self.z}" def swap(self, other: AtomLocationView): """Swaps information between itself and the provided atom location. Args: other (AtomLocationView): the other atom location to swap with. """ self.x, other.x = other.x, self.x self.y, other.y = other.y, self.y self.z, other.z = other.z, self.z self.occ, other.occ = other.occ, self.occ self.B, other.B = other.B, self.B self.alt, other.alt = other.alt, self.alt def defined(self): """Return whether this is a valid location.""" return (self.x is not None) and (self.y is not None) and (self.z is not None) @property def atom(self): return self._parent @property def residue(self): return self.atom.residue @property def chain(self): return self.residue.chain @property def system(self): return self.chain.system @property def x(self): return self.system._locations["coor"][self._ix, 0] @property def y(self): return self.system._locations["coor"][self._ix, 1] @property def z(self): return self.system._locations["coor"][self._ix, 2] @property def occ(self): return self.system._locations["coor"][self._ix, 3] @property def B(self): return self.system._locations["coor"][self._ix, 4] @property def alt(self): return self.system._locations["alt"][self._ix] @property def coors(self): return np.array(self.system._locations["coor"][self._ix, 0:3]) @property def coor_info(self): return np.array(self.system._locations["coor"][self._ix]) @x.setter def x(self, val): self.system._locations["coor"][self._ix, 0] = val @y.setter def y(self, val): self.system._locations["coor"][self._ix, 1] = val @z.setter def z(self, val): self.system._locations["coor"][self._ix, 2] = val @coors.setter def coors(self, val): self.system._locations["coor"][self._ix, 0:3] = val @coor_info.setter def coor_info(self, val): self.system._locations["coor"][self._ix] = val @occ.setter def occ(self, val): self.system._locations["coor"][self._ix, 3] = val @B.setter def B(self, val): self.system._locations["coor"][self._ix, 4] = val @alt.setter def alt(self, val): self.system._locations["alt"][self._ix] = val class ExpressionTreeEvaluator: """A class for evaluating custom logical parenthetical expressions. The implementation is very generic, supports nullary, unary, and binary operators, and does not know anything about what the expressions actually mean. Instead the class interprets the expression as a tree of sub- expressions, governed by parentheses and operators, and traverses the calling upon a user-specified evaluation function to evaluate leaf nodes as the tree is gradually collapsed into a single node. This can be used for evaluating set expressions, algebraic expressions, and others. Args: operators_nullary (list): A list of strings designating nullary operators (i.e., operators that do not have any operands). E.g., if the language describes selection algebra, these could be "hyd", "all", or "none"]. operators_unary (list): A list of strings designating unary operators (i.e., operators that have one operand, which must comes to the right of the operator). E.g., if the language describes selection algebra, these could be "name", "resid", or "chain". operators_binary (list): A list of strings designating binary operators (i.e., operators that have two operands, one on each side of the operator). E.g., if the language describes selection algebra, thse could be "and", "or", or "around". eval_function (str): A function that is able to evaluate a leaf node of the expression tree. It shall accept three parameters: operator (str): name of the operator left: the left operand. Will be None if the left operand is missing or not relevant. Otherwise, can be either a list of strings, which should represent an evaluatable sub-expression corresponding to the left operand, or the result of a prior evaluation of this function. right: Same as `left` but for the right operand. The function should attempt to evaluate the resulting expression and return None in the case of failing or a dictionary with the result of the evaluation stored under key "result". left_associativity (bool): If True (the default), operators are taken to be left-associative. Meaning something like "A and B or C" is "(A and B) or C". If False, the operators are taken to be right-associative, such that the same expression becomes "A and (B or C)". NOTE: MST is right-associative but often human intiution tends to be left-associative. debug (bool): If True (default is false), will print a great deal of debugging messages to help diagnose any evaluation problems. """ def __init__( self, operators_nullary: list, operators_unary: list, operators_binary: list, eval_function: function, left_associativity: bool = True, debug: bool = False, ): self.operators_nullary = operators_nullary self.operators_unary = operators_unary self.operators_binary = operators_binary self.operators = operators_nullary + operators_unary + operators_binary self.eval_function = eval_function self.debug = debug self.left_associativity = left_associativity def _traverse_expression_tree(self, E, i=0, eval_all=True, debug=False): def _collect_operands(E, j): # collect all operands before hitting an operator operands = [] for k in range(len(E[j:])): if E[j + k] in self.operators: k = k - 1 break operands.append(E[j + k]) return operands, j + k + 1 def _find_matching_close_paren(E, beg: int): c = 0 for i in range(beg, len(E)): if E[i] == "(": c = c + 1 elif E[i] == ")": c = c - 1 if c == 0: return i return None def _my_eval(op, left, right, debug=False): if debug: print( f"\t-> evaluating {operand_str(left)} | {op} | {operand_str(right)}" ) result = self.eval_function(op, left, right) if debug: print(f"\t-> got result {operand_str(result)}") return result def operand_str(operand): if isinstance(operand, dict): if "result" in operand and len(operand["result"]) > 15: vec = list(operand["result"]) beg = ", ".join([str(i) for i in vec[:5]]) end = ", ".join([str(i) for i in vec[-5:]]) return "{'result': " + f"{beg} ... {end} ({len(vec)} long)" + "}" return str(operand) return str(operand) left, right, op = None, None, None if debug: print(f"-> received {E[i:]}") while i < len(E): if all([x is None for x in (left, right, op)]): # first part can either be a left parenthesis, a left operand, a nullary operator, or a unary operator if E[i] == "(": end = _find_matching_close_paren(E, i) if end is None: return None, f"parenthesis imbalance starting with {E[i:]}" # evaluate expression inside the parentheses, and it becomes the left operand left, rem = self._traverse_expression_tree( E[i + 1 : end], 0, eval_all=True, debug=debug ) if left is None: return None, rem i = end + 1 if not eval_all: return left, i elif E[i] in self.operators_nullary: # evaluate nullary op left = _my_eval(E[i], None, None, debug) if left is None: return None, f"failed to evaluate nullary operator '{E[i]}'" i = i + 1 elif E[i] in self.operators_unary: op = E[i] i = i + 1 elif E[i] in self.operators: # an operator other than a unary operator cannot appear first return None, f"unexpected binary operator in the context {E[i:]}" else: # if not an operator, then we are looking at operand(s) left, i = _collect_operands(E, i) elif (left is not None) and (op is None) and (right is None): # we have a left operand and now looking for a binary operator if E[i] not in self.operators_binary: return ( None, f"expected end or a binary operator when got '{E[i]}' in expression: {E}", ) op = E[i] i = i + 1 elif ( (left is None) and (op in self.operators_unary) and (right is None) ) or ( (left is not None) and (op in self.operators_binary) and (right is None) ): # we saw a unary operator before and now looking for a right operand, another unary operator, or a nullary operator # OR # we have a left operand and a binary operator before, now looking for a right operand, a unary operator, or a nullary operator if ( E[i] in (self.operators_nullary + self.operators_unary) or E[i] == "(" ): right, i = self._traverse_expression_tree( E, i, eval_all=not self.left_associativity, debug=debug ) if right is None: return None, i else: right, i = _collect_operands(E, i) # We are now ready to evaluate, because: # we have a unary operator and a right operand # OR # we have a left operand, a binary operator, and a right operand result = _my_eval(op, left, right, debug) if result is None: return ( None, f"failed to evaluate operator '{op}' (in expression {E}) with operands {operand_str(left)} and {operand_str(right)}", ) if not eval_all: return result, i left = result op, right = None, None else: return ( None, f"encountered an unexpected condition when evaluating {E}: left is {operand_str(left)}, op is {op}, or right {operand_str(right)}", ) if (op is not None) or (right is not None): return None, f"expression ended unexpectedly" if left is None: return None, f"failed to evaluate expression: {E}" return left, i def evaluate(self, expression: str): """Evaluates the expression and returns the result.""" def _split_tokens(expr): # first split by parentheses (preserving the parentheses themselves) parts = list(re.split("([()])", expr)) # then split by space (getting rid of space) return [ t.strip() for p in parts for t in re.split("\s+", p.strip()) if t.strip() != "" ] # parse expression into tokens E = _split_tokens(expression) val, rem = self._traverse_expression_tree(E, debug=self.debug) if val is None: raise Exception( f"failed to evaluate expression: '{expression}', reason: {rem}" ) return val["result"]