# Copyright Generate Biomedicines, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Layers for conditioning diffusion generative processes. """ from typing import Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from scipy.sparse.csgraph import shortest_path from torch import nn import chroma.utility.chroma from chroma.data.protein import Protein from chroma.data.xcs import validate_XC from chroma.layers.structure import backbone, mvn, optimal_transport, symmetry from chroma.layers.structure.backbone import expand_chain_map from chroma.models import graph_classifier, procap from chroma.models.graph_backbone import GraphBackbone from chroma.models.graph_classifier import GraphClassifier from chroma.models.graph_design import GraphDesign from chroma.models.procap import ProteinCaption class Conditioner(torch.nn.Module): """ A composable function for parameterizing protein design problems. Conditioners provide a general framework for expressing complex protein design problems in terms of simpler, composable sub-conditions in a way that enables automatic sampling. To accomplish this, Conditioners parameterize time-dependent transformations to the global coordinate system and total energy by mapping from unconstrained coordinates and energy to potentially updated coordinates and energy. This convention can subsume classifier guidance, bijective change-of-variables constrained MCMC, and linear subspace constrained MCMC as special cases. A conditioner is implemented as a function which maps from state-energy pairs at a time point `t` to updated state-energy pairs which may reflect hard constraints (typically updates to coordinates and energy) and restraintes (updates just to energy). Conditioners take in and return 5 arguments `X, C, O, U, t`, where `X,C,O` is the protein complex in the `XCS` convention with `S` expressed as a one-hot tensor `O`, `U` is the total system energy and `t` is the diffusion time. Because conditioners have matched input and output types, they can be composed via sequential chaining. Further examples and descriptions of Conditioners can be found throughout this module. Args: *args: Variable length argument list. **kwargs: Arbitrary keyword arguments. Inputs: X (torch.Tensor): Coordinates with shape `(batch_size, num_residues, 4, 3)`. C (torch.LongTensor): Chain map with shape `(batch_size, num_residues)`. O (torch.Tensor): One-hot sequence with shape `(batch_size, num_residues, num_alphabet)`. U (torch.Tensor): energy tensor with shape `(batch_size,)`. t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a scalar. Outputs: X_out (torch.Tensor): Updated coordinates with shape `(batch_size, num_residues_out, 4, 3)`. C_out (torch.LongTensor): Updated chain map with shape `(batch_size, num_residues_out)`. O (torch.Tensor): Updated one-hot sequences with shape `(batch_size, num_residues_out, num_alphabet)`. U_out (torch.Tensor): Modified energy tensor with shape `(batch_size,)`. t_out (Union[torch.Tensor, float]): Modified time tensor with shape `(batch_size,)` or a scalar. """ def __init__(self, *args, **kwargs): super().__init__() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: pass class Identity(Conditioner): def __init__(self): super().__init__() @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: return X, C, O, U, t class ComposedConditioner(Conditioner): def __init__(self, conditioners): super().__init__() self.conditioners = nn.ModuleList(conditioners) @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: for conditioner in self.conditioners: X, C, O, U, t = conditioner(X, C, O, U, t) return X, C, O, U, t def _postprocessing_( self, protein: Protein, output_dict: Optional[dict] = None ) -> Union[Protein, Tuple[Protein, dict]]: for _conditioner in self.conditioners: if hasattr(_conditioner, "_postprocessing_"): if output_dict is None: protein = _conditioner._postprocessing_(protein, output_dict) else: protein, output_dict = _conditioner._postprocessing_( protein, output_dict ) if output_dict is None: return protein else: return protein, output_dict class SubsequenceConditioner(Conditioner): """ SequenceConditioner: A Chroma Conditioning module which, given a GraphDesign model and a subset of residues for which sequence information is known, can add gradients to sampling that bias the samples towards increased `log p(sequence | structure)` Args: design_model (GraphDesign): Trained GraphDesign model. S_condition (torch.Tensor): Of shape (1, num_residues) specifying sequence information. mask_condition (torch.Tensor, optional): Of shape (1, num_residues) specifying which residues to include when computing `log p(sequence | structure)` weight (float, optional): Overall weight to which the gradient is scaled. renormalize_grad (bool, optional): Whether to renormalize gradient to have overall variance `weight`. """ def __init__( self, design_model: GraphDesign, protein: Protein, selection: str = "all", weight: float = 1.0, renormalize_grad: Optional[bool] = False, ): super().__init__() self.design_model = design_model # Register sequence buffers X, C, S = protein.to_XCS() mask_condition = protein.get_mask(selection) self.register_buffer("S_condition", S) self.register_buffer("mask_condition", mask_condition) self.weight = weight self.renormalize_grad = renormalize_grad def _transform_gradient(self, grad, C, t): # grad = clip_atomic_magnitudes_percentile(grad) scale = self.weight / self.design_model.noise_perturb.noise_schedule.sigma( t ).to(C.device) grad = scale * grad / grad.square().mean().sqrt() return grad @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: X_input = X + 0.0 if self.renormalize_grad: X_input.register_hook(lambda _X: self._transform_gradient(_X, C, t)) if X.shape[2] == 4: X_input = F.pad(X_input, [0, 0, 0, 10]) priority = None if self.mask_condition is not None: priority = 1.0 - self.mask_condition out = self.design_model(X_input, C, self.S_condition, t, priority=priority) logp_S = out["logp_S"] if self.mask_condition is not None: logp_S = self.mask_condition * logp_S U = U + self.weight * -logp_S.sum() return X, C, O, U, t class ShapeConditioner(Conditioner): """Volumetric potential for optimizing towards arbitrary geometries. Args: X_target (numpy array): Target point cloud with shape `(num_points, 3)`. noise_schedule (GaussianNoiseSchedule): Diffusion time schedule for loss scaling. autoscale (bool): If True, automatically rescale target point cloud coordinates such that they are approximately volume-scaled to a target protein size. Volume is roughly estimated by converting the point cloud to a sphere cloud with radii large enough to overlap with near neighbors and double counting corrections via inclusion-exclusion. autoscale_num_residues (int): Target protein size for auto-scaling. autoscale_target_ratio (float): Scale factor for adjusting the target protein volume. scale_invariant (bool): If True, compute the loss in a size invariant manner by dynamically renormalizing the point clouds to match Radii of gyration. This approach can be more unstable to integrate and require more careful tuning. shape_loss_weight (float): Scale factor for the overall restraint. shape_loss_cutoff (float): Minimal distance deviation that is penalized in the loss, e.g. to treat as a flat-bottom restraint below the cutoff. sinkhorn_iterations (int): Number of Sinkhorn iterations for Optimal Transport calculations. sinkhorn_scale (float): Entropy regularization scaling parameter for Optimal Transport calculations. sinkhorn_iterations_gw (int): Number of Sinkhorn iterations for Gromov-Wasserstein Optimal Transport calculations. sinkhorn_scale_gw (float): Entropy regularization scaling parameter for Gromov-Wasserstein Optimal Transport calculations. gw_layout (bool): If True, use Gromov-Wasserstein Optimal Transport to compute a point cloud correspondence assuming ideal protein distance scaling. gw_layout_coefficient (float): Scale factor with which to combine average inter-point cloud distances according to OT (Wasserstein) versus Gromov-Wasserstein couplings. """ def __init__( self, X_target, noise_schedule, autoscale: bool = True, autoscale_num_residues: int = 500, autoscale_target_ratio: float = 0.4, scale_invariant: bool = False, shape_loss_weight: float = 20.0, shape_loss_cutoff: float = 0.0, shape_cutoff_D: float = 0.01, scale_max_rg_ratio: float = 1.5, sinkhorn_iterations: int = 10, sinkhorn_scale: float = 1.0, sinkhorn_scale_gw: float = 200.0, sinkhorn_iterations_gw: int = 30, gw_layout: bool = True, gw_layout_coefficient: float = 0.4, eps: float = 1e-3, debug: bool = False, ): super().__init__() self.eps = eps self.noise_schedule = noise_schedule # Shape control parameters self.shape_loss_weight = shape_loss_weight self.shape_loss_cutoff = shape_loss_cutoff self.scale_invariant = scale_invariant self.shape_cutoff_D = shape_cutoff_D self.scale_max_rg_ratio = scale_max_rg_ratio # Autoscale volumes (in units of cubic angstroms) self.autoscale = autoscale self.autoscale_num_residues = autoscale_num_residues self.autoscale_target_ratio = autoscale_target_ratio self.sinkhorn_iterations = sinkhorn_iterations self.sinkhorn_scale = sinkhorn_scale self.sinkhorn_iterations_gw = sinkhorn_iterations_gw self.sinkhorn_scale_gw = sinkhorn_scale_gw self.debug = debug if torch.is_tensor(X_target): X_target = X_target.cpu().data.numpy() if self.autoscale: X_target, self.shape_cutoff_D = chroma.utility.chroma.point_cloud_rescale( X_target, self.autoscale_num_residues, scale_ratio=self.autoscale_target_ratio, ) # Map coupling with Gromov Wasserstein optimal transport self.gw_layout = gw_layout self.gw_layout_coefficient = gw_layout_coefficient if self.gw_layout: self._map_gw_coupling_ideal_glob( X_target, num_residues=autoscale_num_residues ) X_target = torch.Tensor(X_target) self.register_buffer("X_target", X_target[None, ...].clone().detach()) def _distance_knn(self, X, top_k=12, max_scale=10.0): """Topology distance.""" X_np = X.cpu().data.numpy() D = np.sqrt( ((X_np[:, :, np.newaxis, :] - X_np[:, np.newaxis, :, :]) ** 2).sum(-1) ) # Distance cutoff D_cutoff = np.mean(np.sort(D[0, :, :], axis=-1)[:, top_k]) D[D > D_cutoff] = max_scale * np.max(D) D = shortest_path(D[0, :, :])[np.newaxis, :, :] D = torch.Tensor(D).float().to(X.device) return D @torch.no_grad() def _map_gw_coupling_ideal_glob(self, X_target, num_residues): """Plan a layout using Gromov-Wasserstein Optimal transport""" X_target = torch.Tensor(X_target).float().unsqueeze(0) if torch.cuda.is_available(): X_target = X_target.to("cuda") chain_ix = torch.arange(4 * num_residues, device=X_target.device) / 4.0 distance_1D = (chain_ix[None, :, None] - chain_ix[None, None, :]).abs() # Scaling fit log-log to large scale single chain 6HYP D_model = 7.21 * distance_1D**0.322 D_model = D_model / D_model.mean([1, 2], keepdims=True) D_target = self._distance_knn(X_target) D_target = D_target / D_target.mean([1, 2], keepdims=True) T_gw, D_gw = optimal_transport.optimize_couplings_gw( D_model, D_target, scale=self.sinkhorn_scale_gw, iterations_outer=self.sinkhorn_iterations_gw, iterations_inner=self.sinkhorn_iterations, ) self.register_buffer("T_gw", T_gw.clone().detach()) return def _distance(self, X_i, X_j): dX = X_i.unsqueeze(2) - X_j.unsqueeze(1) D = torch.sqrt((dX**2).sum(-1) + self.eps) return D @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: # Distance matrix is # [Num_batch, Num_atoms_target, Num_atoms_model] X_target = self.X_target X_model = X.reshape([X.shape[0], -1, 3]) # Radius of gyration ceiling num_residues = X.shape[1] min_rg = 2.0 * num_residues**0.333 max_rg = self.scale_max_rg_ratio * 2.0 * num_residues**0.4 shape_cutoff_D = self.shape_cutoff_D def _center(_X): _X = _X - _X.mean(1, keepdim=True) return _X def _rg(_X): _X = _X - _X.mean(1, keepdim=True) rsq = _X.square().sum(2, keepdim=True) rg = rsq.mean(1, keepdim=True).sqrt() return rg X_model = _center(X_model) X_target = _center(X_target) if self.scale_invariant: def _resize(_X, target_rg): _X = _X - _X.mean(1, keepdim=True) rsq = _X.square().sum(2, keepdim=True) rg = rsq.mean(1, keepdim=True).sqrt() return _X / rg * target_rg X_model = _resize(X_model, _rg(X_target)) # Compute interatomic distances D_inter = self._distance(X_model, X_target) # Estimate Wasserstein Distance cost = D_inter T_w = optimal_transport.optimize_couplings_sinkhorn( cost, scale=self.sinkhorn_scale, iterations=self.sinkhorn_iterations ) if self.gw_layout: T_w = T_w + self.T_gw * self.gw_layout_coefficient T_w = T_w / T_w.sum([-1, -2], keepdims=True) D_w = (T_w * D_inter).sum([-1, -2]) # Scale by sqrt(SNR_t) and constant factor scale_t = self.shape_loss_weight * self.noise_schedule.SNR(t).sqrt().clamp( min=1e-3, max=3.0 ) neglogp = scale_t * F.softplus(D_w - self.shape_loss_cutoff) U = U + neglogp return X, C, O, U, t class ProCapConditioner(Conditioner): """Natural language conditioning for protein backbones. This conditioner uses an underlying `ProteinCaption` model to determine the likelihood of a noised structure corresponding to a given caption. Captions can be specified as corresopnding to a particular chain of the structure, or to the entire complex. The encoded structures and captions are passed to the model together, and the output loss that adjusts the energy is the masked cross-entropy over the caption tokens. Args: caption (str): Caption for the conditioner. Currently, a separate conditioner should be constructed for each desired caption, even with a single `ProteinCaption` model. chain_id (int): The 1-indexed chain to which the caption corresponds, or -1 for captions corresponding to the entire structure. The provided checkpoints are trained with UniProt captions for chain_id > 0 and PDB caption for chain_id = -1. Regardless of whether the caption is specific to one chain, the conditioner acts on the entire structure. weight (float): Overall factor by which the caption gradient is scaled. model (generate.models.procap.ProteinCaption, optional): The input model whose likelihoods are used. If not given, defaults to the checkpoint used for the paper. use_sequence (bool): Whether to use input sequence, default False. device (str, optional): Device on which to store model. If not given, GPU will be used when available. Inputs: X (torch.Tensor): Structure tensor with shape `(batch_size, num_residues, 4, 3)`. C (torch.LongTensor): Chain map tensor with shape `(batch_size, num_residues)` O (torch.Tensor, optional): One-hot tensor allowing the input of sequence information, of shape (1, num_residues, num_alphabet). U (torch.Tensor): Energy tensor with shape `(batch_size,)`. t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a scalar. Outputs: X_out (torch.Tensor): Unchanged structure tensor with shape `(batch_size, num_residues, 4, 3)`. C_out (torch.LongTensor): Unchanged chain map tensor with shape `(batch_size, num_residues)`. O_out (torch.Tensor, optional): One-hot tensor allowing the output of sequence information, of shape (1, num_residues, num_alphabet). U_out (torch.Tensor): Modified energy tensor with shape `(batch_size,)`. t_out (Union[torch.Tensor, float]): Modified time tensor with shape `(batch_size,)` or a scalar. """ def __init__( self, caption: str, chain_id: int, weight: float = 10, model: Union[ProteinCaption, str] = "named:public", use_sequence: bool = False, device: Optional[str] = None, ) -> None: super().__init__() if isinstance(model, ProteinCaption): self.model = model elif isinstance(model, str): self.model = procap.load_model( model, device=device, strict_unexpected=False ) self.model.eval() if device is None: if torch.cuda.is_available(): self.model.to("cuda") else: self.model.to(device) self.caption = caption self.register_buffer("chain_id", torch.Tensor([int(chain_id)])) self.weight = weight self.use_sequence = use_sequence @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: loss = self.model( X, C, [self.caption] * X.shape[0], self.chain_id.to(X.device).expand(X.shape[0], 1), O=O if self.use_sequence else None, add_noise=False, t=t, ).loss U = U + self.weight * loss return X, C, O, U, t class ProClassConditioner(Conditioner): """ ProClassConditioner: A Chroma Conditioning module which can specify chain level annotations for fold, function, and organism. The current labels that can be conditioned on are: * cath: protein domain annotations from . Annotation examples include `2`, `2.40`, `2.40.155`. * funfam: domain level functional annotations. * organism: the organism of origin of a protein. Annotation examples include `Homo sapiens (Human)`, `Escherichia coli`, `Pseudomonas putida (Arthrobacter siderocapsulatus)`, `Rattus norvegicus (Rat)` * pfam: protein family annotations which represent domain level structural characteristics. For a complete list of valid value label pairs import the value dictionary from the `GraphClassifierLoader` in the zoo. Note: This conditioner is a research preview. Conditioning with it can be inconsistent and depends on the relative prevalence of a given label in the dataset. With repeated tries it will produce successful results for more abundant labels. Please see the supplement to the paper for details. This is currently not recommended for production use. The most reproducible labels are C level annotations in cath, (e.g. `1`,`2`,`3`). Args: label (str): The annotation to condition on in the set [cath, funfam, pfam, organism, secondary_structure]. value (str, optional): The particular annotation string to use. For a complete list of values for a given label use the static method :meth:`possible_conditions`. Defaults to None. model (GraphClassifier, optional): A ProClass instance to use for conditioning. if None is provided the recommended model is automatically loaded. Defaults to None. weight (float, optional): The weighting of the conditioner relative to the backbone model. Defaults to 1. max_norm (float, optional): The maximum magnitude of the gradient, above which the magnitude is clipped. Defaults to None. renormalize_grad (bool, optional): Whether to renormalize gradient to have overall variance `weight`. use_sequence (bool, optional): Whether to use input sequence, default False. device (str, optional): the device to put the conditioner on, accepts `cpu` and `cuda`. If None is provided it will automatically try to put it on the GPU if possible. Defaults to None. debug (bool, optional): provides gradient values during optimization for setting weights and debugging. """ def __init__( self, label: str, value: Union[Optional[str], torch.Tensor] = None, model: Union[GraphClassifier, str] = "named:public", weight: float = 5, max_norm: Optional[float] = 20, renormalize_grad: Optional[bool] = False, use_sequence: bool = False, device: Optional[str] = None, debug: bool = False, ) -> None: super().__init__() self.label = label self.value = value self.max_norm = max_norm self.renormalize_grad = renormalize_grad self.weight = weight self.use_sequence = use_sequence self.debug = debug if isinstance(model, str): self.proclass_model = graph_classifier.load_model(model, device=device) elif isinstance(model, GraphClassifier): self.proclass_model = model self.proclass_model.eval() # Move Model to the indicated device if device is None: if torch.cuda.is_available(): self.proclass_model.to("cuda") else: self.proclass_model.to(device) self._transform_inputs() self._validate_inputs() def _transform_inputs(self): # Automatically handle heirarchical inputs in the format X.Y.Z.W if self.label.lower() in ["cath", "funfam"]: self.label = self.label.lower() self.label += "_" + str(self.value.count(".")) # Correct Capitalization if self.label.lower() == "organism": self.label = "Organism" # Support Normative PFam IDs if self.label.lower() == "pfam": valid_values = self.proclass_model.class_config["pfam"]["tokens"] if self.value.count(".") == 0: valid_ids = [s for s in valid_values if self.value in s] if len(valid_ids) == 1: self.value = valid_ids[0] else: raise Exception(f"Invalid Value {self.value} for {self.label}.") def _validate_inputs(self): # Check Labels valid_labels = list(self.proclass_model.heads["chain"].keys()) valid_labels += list(self.proclass_model.heads["first_order"]) if self.label not in valid_labels: valid_label_str = ", ".join(valid_labels) raise Exception(f"Invalid Label. Label must be one of: {valid_label_str}.") # Check Values if self.label in list(self.proclass_model.heads["chain"].keys()): valid_values = self.proclass_model.class_config[self.label]["tokens"] if self.value not in valid_values: raise Exception(f"Invalid Value {self.value} for {self.label}.") def _proclass_neglogp(self, X, C, t, label, value=None, O=None, mask=None): """ Args: X (torch.tensor): (batch, num_res, 4, 3) or (batch, num_res, 14, 3) C (torch.tensor): (batch, num_res) t (float): 0 < t <= 1 label (string): class label to condition on, chosen from `self.class_config.keys()` mask (torch.tensor): (optional) bool tensor of shape (batch, num_res) for first order scores, (batch, num_chains) for hain-based scores, and ( batch, num_res, num_res) for second order scores. The order of your score can be determined by inspecting self.class_config[label]['level'] value (string): (optional) the token-based representation of the value you would like to condition `label` on, you can select options from `self.class_config[label]['tokens']` for all scores except `is_interface` or `contact` for which you should leave a `value` of None. O (torch.tensor): one-hot sequence tensor of size (batch, num_res, num_alphabet) """ self.proclass_model.eval() _bak = self.proclass_model.encoder.checkpoint_gradients self.proclass_model.encoder.checkpoint_gradients = False level = self.proclass_model.class_config[label]["level"] head, pool = self.proclass_model.heads[level][label] node_h, edge_h, edge_idx, mask_i, mask_ij = self.proclass_model.encode( X, C, O if self.use_sequence else None, t ) if level == "chain": node_h, c_mask = pool(node_h, C) c_mask = c_mask elif level == "first_order": c_mask = C > 0 elif level == "second_order": c_mask = (C > 0).unsqueeze(-2) & (C > 0).unsqueeze(-1) node_h = head(node_h) if mask is not None: c_mask = mask & c_mask if self.proclass_model.class_config[label]["loss"] == "ce": neglogp = node_h.log_softmax(dim=-1).mul(-1) else: neglogp = node_h.sigmoid().log().mul(-1) if level == "chain": index = ( self.proclass_model.class_config[label]["tokenizer"][value] if value is not None else 0 ) neglogp = neglogp[..., index][c_mask].sum() elif level == "first_order": if isinstance(value, str): index = torch.LongTensor( [ self.proclass_model.class_config[label]["tokenizer"][v] for v in value ] ).to(neglogp.device) neglogp = torch.gather( neglogp, 2, index.unsqueeze(0).unsqueeze(2) ).sum() elif isinstance( value, torch.Tensor ): # Mask Tensor is Passed for SS Conditioning logp = -1 * neglogp masked_log_probs = torch.where( value > 0, logp, -float("inf") * torch.ones_like(logp) ) log_probs_sum = torch.logsumexp(masked_log_probs, dim=-1) log_probs_sum = torch.where( value.sum(-1) > 0, log_probs_sum, torch.zeros_like(log_probs_sum) ) neglogp = -1 * log_probs_sum.sum() self.proclass_model.encoder.checkpoint_gradients = _bak return neglogp def _transform_gradient(self, grad, C, t): if self.debug: print("conditioning grad norm:", grad.norm().item()) if grad.norm() > 1e-8: # Don't rescale zero gradients! # grad = clip_atomic_magnitudes_percentile(grad,percentile=0.95) if self.renormalize_grad: scale = ( self.weight / self.proclass_model.noise_perturb.noise_schedule.sigma(t).to( C.device ) ) grad = scale * (grad / grad.norm()) else: grad = self.weight * grad if self.max_norm is not None: if grad.norm() > self.max_norm: grad = self.max_norm * (grad / grad.norm()) if self.debug: print("output_grad_norm", grad.norm().item()) return grad @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: X_input = X + 0.0 X_input.register_hook(lambda _X: self._transform_gradient(_X, C, t)) neglogp = self._proclass_neglogp( X_input, C, t, self.label, value=self.value, O=O ) if self.debug: print("time", t.item(), "neglogp:", neglogp.item()) return X, C, O, neglogp + U, t class SubstructureConditioner(Conditioner): """ SubstructureConditioner: A Chroma Conditioning module which can specifiy a subset of residues for which to condition on absolute atomic coordinates, see supplementary section M for more details. Args: protein (generate.data.protein.Protein): Object containing structural information to condition on. backbone_model (generate.models.GraphBackbone): The `GraphBackbone` object one is conditioning selection (str): A string specifying the selection to condition on, will be retrieved by `protein.get_mask(selection)` . The selection can be defined from a set of residue indices `indices` by `protein.sys.setSelection(indices, selection)`. rg (bool, optional): Whether or not to add reconstruction guidance gradients, see supplementary section M for a discussion. This can reduce incidence of clashes / bond violations / discontinuities at the cost of inference time and some stability. weight (float, optional): Overall weight of the reconstruction guidance term (untransformed). tspan (Tuple[float, float], optional): Time interval over which to appl y reconstruction guidance, can be helpful to turn off at times close to zero. tspan[0] should be < tspan[1]. weight_max (float, optional): Final rg gradient is rescaled to have `scale` variance, where `scale` is clamped to have a maximum value of `max_weight`. gamma (Optional[float]): Gamma inflates the translational degree of freedom of the underlying conditional multivariate normal, making it easier for Chroma to move the center of mass of the infilled samples. Setting to [0.01, 0.1, 1.0] is a a plausible place to start to increase sample Rg. center_init (Optional[bool]): Whether to center the input structural data """ def __init__( self, protein: Protein, backbone_model: GraphBackbone, selection: str, rg: bool = False, weight: float = 1.0, tspan: Tuple[float, float] = (1e-1, 1), weight_max: float = 3.0, gamma: Optional[float] = None, center_init: Optional[bool] = True, ): super().__init__() self.protein = protein self.backbone_model = backbone_model X, C, S = protein.to_XCS() X = X[:, :, :4, :] if center_init: X = backbone.center_X(X, C) D = protein.get_mask(selection).bool() self.base_distribution = self.backbone_model.noise_perturb.base_gaussian self.noise_schedule = self.backbone_model.noise_perturb.noise_schedule self.conditional_distribution = mvn.ConditionalBackboneMVNGlobular( covariance_model=self.base_distribution.covariance_model, complex_scaling=self.base_distribution.complex_scaling, X=X, C=C, D=D, gamma=gamma, ) X = self.conditional_distribution.sample(1) self.tspan = tspan self.weight = weight self.weight_max = weight_max self.rg = rg self.register_buffer("X", X) self.register_buffer("C", C) self.register_buffer("S", S) self.register_buffer("D", D) print( "Note: We recommend using sde_func='langevin' for sampling with SubstructureCondtioner" ) def _transform_gradient(self, grad, C, t): mask = (t > self.tspan[0]) & (t < self.tspan[1]) scale = ( (self.weight / self.noise_schedule.sigma(t).to(C.device)) .clamp(max=self.weight_max) .masked_fill(~mask, 0.0) ) grad = scale * grad / grad.square().mean(dim=[1, 2, 3], keepdim=True).sqrt() return grad def _rg_loss(self, X0, C): C_clamp = torch.where(self.D, C, -C.abs()) X0 = backbone.impute_masked_X(X0, C_clamp) X_target = backbone.impute_masked_X(self.X.repeat(X0.size(0), 1, 1, 1), C_clamp) loss = ( self.base_distribution._multiply_R_inverse(X_target - X0, C).square().sum() ) return loss @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: loss = 0.0 Z = self.base_distribution._multiply_R_inverse(X, C) X = self.conditional_distribution.sample(Z=Z) # Reconstruction guidance if self.rg: X_input = X + 0.0 X_input.register_hook(lambda _X: self._transform_gradient(_X, C, t)) X0 = self.backbone_model.denoise(X_input, C, t) loss = self._rg_loss(X0, C) U = U + loss return X, C, O, U, t class SymmetryConditioner(Conditioner): """A class that implements a symmetry conditioner for a protein structure. A symmetry conditioner applies a set of symmetry operations to a protein structure and enforces constraints on the resulting conformations. It can be used to model symmetric complexes or assemblies of proteins. Args: G (torch.Tensor or str): A tensor of shape (n_sym, 3, 3) representing the symmetry operations as rotation matrices. num_chain_neighbors (int): The number of neighbors to consider for each chain in the complex. freeze_com (bool): Whether to freeze the center of mass of the complex during optimization. grad_com_surgery (bool): Whether to apply gradient surgery to remove the center of mass component from the gradient. interface_restraint (bool): Whether to apply a flat-bottom potential to restrain the distance between neighboring chains in the complex. restraint_grad (bool): Whether to include the restraint gradient in the total gradient. enable_rigid_drift (bool): Whether to enable rigid body drift correction for the complex. canonicalize (bool): Whether to canonicalize the chain order and orientation of the complex. Inputs: X (torch.Tensor): Data tensor with shape `(batch_size, num_residues, 4, 3)`. C (torch.LongTensor): Conditioning tensor with shape `(batch_size, num_residues)`. O (torch.Tensor): One-hot sequence with shape `(batch_size, num_residues, num_alphabet)`. U (torch.Tensor): Energy tensor with shape `(batch_size,)`. t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a scalar. Outputs: X_out (torch.Tensor): Modified data tensor with shape `(batch_size, num_residues , 4, 3)`. C_out (torch.LongTensor): Modified conditioning tensor with shape `(batch_size, num_residues)`. O_out (torch.Tensor, optional): Modified one-hot tensor with sequence of shape `(batch_size, num_residues, num_alphabet)`. U_out (torch.Tensor): Modified Energy tensor with shape `(batch_size,)`. t_out (Union[torch.Tensor, float]): Modified time tensor with shape `(batch_size ,)` or a scalar. """ def __init__( self, G, num_chain_neighbors, freeze_com=False, grad_com_surgery=False, interface_restraint=False, restraint_grad=False, enable_rigid_drift=True, canonicalize=True, seed_idx=None, ): super().__init__() if type(G) == str: self.G = symmetry.get_point_group(G) else: self.G = G self.num_chain_neighbors = num_chain_neighbors self.freeze_com = freeze_com self.grad_com_surgery = grad_com_surgery self.interface_restraint = interface_restraint self.restraint_grad = restraint_grad self.enable_rigid_drift = enable_rigid_drift self.canonicalize = canonicalize self.seed_idx = seed_idx if num_chain_neighbors > self.G.shape[0] - 1: self.num_chain_neighbors = self.G.shape[0] - 1 self.potts_symmetry_order = self.num_chain_neighbors + 1 print( "Note: We recommend using sde_func='langevin' for sampling with SymmetryConditioner" ) def flat_bottom_potential(self, r, r0, k, d): condition = torch.abs(r - r0) < d return torch.where( condition, torch.zeros_like(r), k * (torch.abs(r - r0) - d) ** 2 ) def translational_scaling(self, C): """Compute parameters for enforcing Rg scaling""" # Build expanded map per chain C_expand = C.unsqueeze(-1).expand(-1, -1, 4) C_atomic = C_expand.reshape(C.shape[0], -1) C_mask_all = backbone.expand_chain_map(torch.abs(C_atomic))[..., None] a = 1.5587407701549267 # TODO: this can change if our prior changed nu = 2.0 / 5.0 r = 2.0 / 3.0 # C_mask_all is () # Monomer and complex sizes (batch, {chains}) C_mask = C_mask_all.squeeze(-1) N_per_chain = C_mask.sum(1) N_per_complex = C_mask.sum([1, 2]) # Compute expected Rg^2 values per complex Rg2_complex = (r**2) * N_per_complex ** (2.0 * nu) Rg2_chain = (r**2) * N_per_chain ** (2.0 * nu) # Compute OU process parameters N_per_chain = torch.clip(N_per_chain, 1, 1e6) # Compute size-weighted average Rg^2 per chain Rg2_chain_avg = (N_per_chain * Rg2_chain).sum(1) / (N_per_chain.sum(1) + 1e-5) Rg2_centers_of_mass = torch.clip(Rg2_complex - Rg2_chain_avg, min=1) Rg_centers_of_mass = torch.sqrt(Rg2_centers_of_mass) N_chains_per_complex = (C_mask.sum(1) > 0).sum(1) # Correct for the fact that we are sampling chains IID (not # centered) but want to control centered Rg std_correction = torch.sqrt( N_chains_per_complex / (N_chains_per_complex - 1).clamp(min=1) ) marginal_COM_std = std_correction * Rg_centers_of_mass return marginal_COM_std def expand_C(self, C, k): missing = C < 0 Cs = [] for i in range(k): newC = C.abs() + C.unique().max() * i newC[missing] = -newC[missing] Cs += [newC] C = torch.cat(Cs, dim=1) return C def expand_S(self, S, k): S = torch.cat([S] * k, dim=1) return S def expand_au(self, X, C, G, scale=True): n_atoms_per_res = X.shape[-2] C_au = C # compute new chain mask C = self.expand_C(C, G.shape[0]) # compute COM inflation due to tesselate if scale: if self.enable_rigid_drift: translate_ratio = self.translational_scaling(C) / ( self.translational_scaling(C_au) * (self.num_chain_neighbors + 1) ** 0.5 ) else: translate_ratio = 1.0 mask_expand = ( (C_au > 0) .float() .reshape(list(C_au.shape) + [1, 1]) .expand([-1, -1, n_atoms_per_res, -1]) ) X_com = (mask_expand * X).sum([1, 2], keepdims=True) / ( mask_expand.sum([1, 2], keepdims=True) ) X_shifted_mean = X_com * translate_ratio X = (X - X_com) + X_shifted_mean X = torch.einsum("gij,braj->bgrai", G, X).reshape(1, -1, n_atoms_per_res, 3) return X, C def _postprocessing_( self, protein: Protein, output_dict: Optional[dict] = None ) -> Union[Protein, Tuple[Protein, dict]]: X, C, S = protein.to_XCS(all_atom=True) X_sym, C_sym, S_sym = self.symmetrize_output(X, C, S) protein_sym = Protein.from_XCS(X_sym, C_sym, S_sym) if output_dict is None: return protein_sym else: trajectory = output_dict["trajectory"] traj_sym, C_sym, S_sym = self.symmetrize_output( trajectory.to_XCS_trajectory()[0], C, S ) trajectory_sym = Protein.from_XCS_trajectory(traj_sym, C_sym, S_sym) output_dict["trajectory"] = trajectory_sym return protein_sym, output_dict def center_X(self, X, C): mask_expand = ( (C > 0).float().reshape(list(C.shape) + [1, 1]).expand([-1, -1, 4, -1]) ) # compute mean based on backbone coordinates X_mean = (mask_expand * X[:, :, :4, :]).sum([1, 2], keepdims=True) / ( mask_expand.sum([1, 2], keepdims=True) ) X_centered = X - X_mean return X_centered def symmetrize_output(self, X, C, S): if type(X) == torch.Tensor: assert len(X.shape) == 4 X = [X] n_chains = ( self.num_chain_neighbors + 1 if self.num_chain_neighbors + 1 < self.G.shape[0] else self.G.shape[0] ) C_seed = C.reshape(1, n_chains, -1)[:, 0] S_seed = S.reshape(1, n_chains, -1)[:, 0] traj = [] for each in X: n_atoms_per_res = each.shape[-2] X_seed = each.reshape(1, n_chains, -1, n_atoms_per_res, 3)[:, 0] X_tess, C_tess = self.expand_au(X_seed, C_seed, self.G, scale=False) S_tess = self.expand_S(S_seed, k=self.G.shape[0]) X_tess = self.center_X(X_tess, C_tess) traj.append(X_tess) if len(traj) == 1: traj = traj[0] return traj, C_tess, S_tess @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: self.G = self.G.to(X.device) if self.grad_com_surgery or self.freeze_com: X_tess, C_tess = self.expand_au(X, C, self.G, scale=False) else: X_tess, C_tess = self.expand_au(X, C, self.G, scale=True) X_subdomain, C_subdomain, subdomain_idx, seed_idx = symmetry.subsample( X_tess, C_tess, self.G, self.num_chain_neighbors, seed_idx=self.seed_idx ) if self.canonicalize: X_canonical = torch.einsum( "ij,barj->bari", self.G[seed_idx].inverse(), X_subdomain ) else: X_canonical = X_subdomain def grad_surgery(dx): if self.grad_com_surgery: # inflate COM signal translate_ratio = self.translational_scaling(C_tess) / ( self.translational_scaling(C) ) dx_com = dx.mean([0, 1, 2]) dx_com_scale = dx_com * translate_ratio dx = (dx - dx_com) + dx_com_scale if self.freeze_com: dx = backbone.center_X(dx, C_subdomain) # averaging grad dx = dx / (self.num_chain_neighbors + 1) return dx X_canonical.register_hook(grad_surgery) # Tesselate sequence symmetry_order = C_subdomain.shape[1] // C.shape[1] O_subdomain = ( O[:, None, :, :] .expand([-1, symmetry_order, -1, -1]) .reshape(list(C_subdomain.shape) + [O.shape[-1]]) ) return X_canonical, C_subdomain, O_subdomain, U, t class ScrewConditioner(Conditioner): """A class that implements a screw conditioner for a protein structure. A screw conditioner applies a screw transformation to a protein structure and repeats it for a given number of times. It can be used to model helical or cyclic symmetry of proteins. Attributes: theta (float): The angle of rotation about the z-axis in radians. tz (float): The translation along the z-axis. M (int): The number of repetitions of the screw transformation. Methods: prepare_transforms(N_repeat): Compute the rotation matrices and translation vectors for the screw transformation. expand_C(C, k): Expand a chain tensor C by duplicating each chain k times with different labels. rebuild(X, C, M): Rebuild a protein structure with the screw transformation. forward(X, C, U, t): Apply the screw transformation to a protein structure and return modified tensors. Inputs: X (torch.Tensor): Data tensor with shape `(batch_size, num_residues, 4, 3)`. C (torch.LongTensor): Chain tensor with shape `(batch_size, num_residues)`. O (torch.Tensor): One-hot sequence with shape `(batch_size, num_residues, num_alphabet)`. U (torch.Tensor): Energy tensor with shape `(batch_size,)`. t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a s calar. Outputs: X_out (torch.Tensor): Modified data tensor with shape `(batch_size, num_residues * M, 4, 3)`. C_out (torch.LongTensor): Modified chain tensor with shape `(batch_size, num_residues * M)`. O_out (torch.Tensor, optional): Modified one-hot tensor with sequence of shape `(batch_size, num_residues, num_alphabet)`. U_out (torch.Tensor): Modified energy tensor with shape `(batch_size,)`. t_out (Union[torch.Tensor, float]): Modified time tensor with shape `(batch_size,)` or a scalar. """ def __init__(self, theta, tz, M): super().__init__() self.theta = torch.Tensor([theta]).squeeze() self.tz = tz self.M = M self.Rs, self.ts = self.prepare_transforms(M) def prepare_transforms(self, N_repeat): # Rotation matrix for rotation about the z-axis R_base = torch.tensor( [ [torch.cos(self.theta), -torch.sin(self.theta), 0], [torch.sin(self.theta), torch.cos(self.theta), 0], [0, 0, 1], ] ) t_base = torch.tensor([0, 0, self.tz]) Rs = [] ts = [] R = R_base t = t_base for _ in range(N_repeat): R = R @ R_base t = t + t_base Rs.append(R[None]) ts.append(t[None]) Rs = torch.cat(Rs, dim=0) ts = torch.cat(ts, dim=0) return Rs, ts def expand_C(self, C, k): Cs = [] for i in range(k): newC = C + C.unique().max() * i Cs += [newC] C = torch.cat(Cs, dim=1) return C def rebuild(self, X, C, M, au_len): Rs, ts = self.prepare_transforms(M) X = torch.einsum("mji,bari->bmarj", Rs.to(X.device), X[:, :au_len]) X_screw = X + ts.to(X.device)[None][:, :, None, None, :] C_screw = self.expand_C(C[:, :au_len], Rs.shape[0]) X_screw = X_screw.reshape(1, -1, 4, 3) return X_screw, C_screw @validate_XC() def forward(self, X, C, O, U, t): X.requires_grad = True X = torch.einsum("mji,bari->bmarj", self.Rs.to(X.device), X) X_screw = X + self.ts.to(X.device)[None][:, :, None, None, :] C_screw = self.expand_C(C, self.M) def grad_surgery(dx): dx = dx / (self.M) return dx X.register_hook(grad_surgery) X_screw = X_screw.reshape(1, -1, 4, 3) # Tesselate sequence symmetry_order = C_screw.shape[1] // C.shape[1] O_screw = ( O[:, None, :, :] .expand([-1, symmetry_order, -1, -1]) .reshape(list(C_screw.shape) + [O.shape[-1]]) ) return X_screw, C_screw, O_screw, U, t class InflateConditioner(Conditioner): """Inflate conditioner This class inherits from the Conditioner class and defines a specific conditioner that inflates shift the COM of X based on a vector v and a scalar. Args: v (torch.Tensor): Vector to add to X with shape `(num_residues, 4, 3)`. scale (float): Scale factor for v. Inputs: X (torch.Tensor): Data tensor with shape `(batch_size, num_residues, 4, 3)`. C (torch.LongTensor): Conditioning tensor with shape `(batch_size, num_residues)`. O (torch.Tensor): One-hot sequence with shape `(batch_size, num_residues, num_alphabet)`. U (torch.Tensor): Noise tensor with shape `(batch_size,)`. t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a scalar. Outputs: X_out (torch.Tensor): Modified data tensor with shape `(batch_size, num_residues, 4, 3)`. C_out (torch.LongTensor): Modified conditioning tensor with shape `(batch_size, num_residues)`. O_out (torch.Tensor, optional): Modified one-hot tensor with sequence of shape `(batch_size, num_residues, num_alphabet)`. U_out (torch.Tensor): Modified noise tensor with shape `(batch_size,)`. t_out (Union[torch.Tensor, float]): Modified time tensor with shape `(batch_size,)` or a scalar. """ def __init__(self, v: torch.Tensor, scale: float): super().__init__() self.v = v / v.norm() self.scale = scale @validate_XC() def forward( self, X: torch.Tensor, C: torch.LongTensor, O: torch.Tensor, U: torch.Tensor, t: Union[torch.Tensor, float], ) -> Tuple[ torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor, Union[torch.Tensor, float], ]: X.requires_grad = True X = X + self.v.to(X.device) * self.scale return X, C, O, U, t class RgConditioner(Conditioner): """Conditioners that penalized backbones for having Rg deviated from the expected Rg Scaling. The penalty function takes the form of a flat bottom potential penalty = || ReLU( || Rg(X, C) - Rg_ceiling_scale * expected_Rg(C) || ) ||^2 Args: scale (float): Scale factor for the penalty Rg_ceiling_scale (float): the flat bottom potentialy width, needs to be larger than 1. complex_rg (bool): whether compute expected Rg based on the complex Rg scaling. If True, expected Rg will be computed by treating the entire complex as if it is a single cahin. If False, expected Rg will be computed for individual chains Inputs: X (torch.Tensor): Data tensor with shape `(batch_size, num_residues, 4, 3)`. C (torch.LongTensor): Conditioning tensor with shape `(batch_size, num_residues)`. O (torch.Tensor): One-hot sequence with shape `(batch_size, num_residues, num_alphabet)`. U (torch.Tensor): Noise tensor with shape `(batch_size,)`. t (Union[torch.Tensor, float]): Time tensor with shape `(batch_size,)` or a scalar. Outputs: X_out (torch.Tensor): Modified data tensor with shape `(batch_size, num_residues, 4, 3)`. C_out (torch.LongTensor): Modified conditioning tensor with shape `(batch_size, num_residues)`. O_out (torch.Tensor, optional): Modified one-hot tensor with sequence of shape `(batch_size, num_residues, num_alphabet)`. U_out (torch.Tensor): Modified noise tensor with shape `(batch_size,)`. t_out (Union[torch.Tensor, float]): Modified time tensor with shape `(batch_size,)` or a scalar. """ def __init__( self, scale=1.0, Rg_ceiling_scale=1.5, complex_rg=False, ): super().__init__() self.eps = 1e-5 self.scale = scale self.Rg_ceiling_scale = Rg_ceiling_scale self.complex_rg = complex_rg def means_per_chain(self, _X, _C, eps=1e-5): """Compute center of mass for each chain in a complex""" # (B,N) => (B,N,C) => (B,N,C,A,X) mask_chains = (expand_chain_map(_C) > 0).float() mask_chains_expand = mask_chains[..., None, None] X_masked = mask_chains_expand * _X.unsqueeze(2) # Compute per chain means X_mean_chains = X_masked.sum([1, 3], keepdims=True) / ( 4 * mask_chains_expand.sum([1, 3], keepdims=True) + eps ) # Compute per complex mean X_mean_complex = X_masked.sum([1, 2, 3], keepdims=True) / ( 4 * mask_chains_expand.sum([1, 2, 3], keepdims=True) + eps ) return X_masked, X_mean_chains, X_mean_complex, mask_chains def expected_Rg(self, N): """compute expected Rg""" nu = 2.0 / 5.0 r = 2.0 return ((r**2) * N ** (2.0 * nu)) ** 0.5 def compute_Rg( self, X, C, ): """compute Rg with X and C""" X.requires_grad = True X_masked, X_mean_chains, X_mean_complex, mask_chains = self.means_per_chain( X, C ) mask_chains_expand = mask_chains[..., None] r2_i = mask_chains_expand * (X_masked - X_mean_chains).square().sum(-1) r2_i_mean = (r2_i + self.eps).mean(-1).sum(1) / (mask_chains.sum(1) + self.eps) r_i_rms = torch.sqrt(r2_i_mean + self.eps) return r_i_rms @validate_XC() def forward(self, X, C, O, U, t): if self.complex_rg: C_tmp = torch.ones_like(C) else: C_tmp = C # Compute expected Rg N_chain = expand_chain_map(torch.abs(C_tmp)).sum(1) r_i_rms_expected = self.expected_Rg(N_chain) true_rg = self.compute_Rg(X, C_tmp) U_Rg = F.relu(true_rg - self.Rg_ceiling_scale * r_i_rms_expected).square() U = U + self.scale * U_Rg.sum() return X, C, O, U, t def clip_atomic_magnitudes_percentile(dX, percentile=0.9): D = dX.square().sum(-1, keepdims=True).add(1e-5).sqrt() D_max = D.quantile(percentile) dX_adjust = dX * D.clamp(max=D_max) / D return dX_adjust