# Copyright Generate Biomedicines, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Joint model for protein complexes with applications to unconditional and conditional protein design in a programmable manner. """ import copy import inspect from collections import defaultdict, namedtuple from typing import List, Literal, Optional, Tuple, Union import torch import torch.nn as nn from chroma.constants import AA20_3 from chroma.data.protein import Protein from chroma.layers.structure.backbone import ProteinBackbone from chroma.models import graph_backbone, graph_design class Chroma(nn.Module): """Chroma: A generative model for protein design. Chroma is a generative model for proteins and protein complexes. It combines a diffusion model for generating protein backbones together with discrete generative models for sequence and sidechain conformations given structure. It enables programmatic design of proteins through a conditioning framework. This class provides an interface to: * Load model weights * Sample protein complexes, both unconditionally and conditionally * Perform sequence design of sampled backbones Args: weights_backbone (str, optional): The name of the pre-trained weights to use for the backbone network. weights_design (str, optional): The name of the pre-trained weights to use for the autoregressive design network. device (Optional[str]): The device on which to load the networks. If not specified, will automatically use a CUDA device if available, otherwise CPU. strict (bool): Whether to strictly enforce that all keys in `weights` match the keys in the model's state_dict. verbose (bool, optional): Show outputs from download and loading. Default False. GitHub Copilot: 这段注释是对一个名为 "Chroma" 的蛋白质设计生成模型的描述。 Chroma 是一个用于生成蛋白质和蛋白质复合物的模型,它结合了一个用于生成蛋白质骨架的扩散模型,以及一个给定结构的序列和侧链构象的离散生成模型。 它通过一个条件框架实现了蛋白质的程序化设计。这个类提供了以下接口: * 加载模型权重 * 无条件和有条件地抽样蛋白质复合物 * 对抽样的蛋白质骨架进行序列设计 参数说明: * weights_backbone (str, 可选): 用于骨架网络的预训练权重的名称。 * weights_design (str, 可选): 用于自回归设计网络的预训练权重的名称。 * device (Optional[str]): 加载网络的设备。如果未指定,将自动使用可用的 CUDA 设备,否则使用 CPU。 * strict (bool): 是否严格要求 `weights` 中的所有键与模型的 state_dict 中的键匹配。 * verbose (bool, 可选): 是否显示下载和加载的输出。默认为 False。 """ def __init__( self, weights_backbone: str = "named:public", weights_design: str = "named:public", device: Optional[str] = None, strict: bool = False, verbose: bool = False, ) -> None: super().__init__() import warnings warnings.filterwarnings("ignore") # If no device is explicity specified automatically set device if device is None: if torch.cuda.is_available(): device='cuda' else: device = "cpu" print(device) self.backbone_network = graph_backbone.load_model( weights_backbone, device=device, strict=strict, verbose=verbose ).eval() self.design_network = graph_design.load_model( weights_design, device=device, strict=strict, verbose=False, ).eval() def sample( self, # Backbone Args samples: int = 1, steps: int = 500, chain_lengths: List[int] = [100], tspan: List[float] = (1.0, 0.001), protein_init: Protein = None, conditioner: Optional[nn.Module] = None, langevin_factor: float = 2, langevin_isothermal: bool = False, inverse_temperature: float = 10, initialize_noise: bool = True, integrate_func: Literal["euler_maruyama", "heun"] = "euler_maruyama", sde_func: Literal["langevin", "reverse_sde", "ode"] = "reverse_sde", trajectory_length: int = 200, full_output: bool = False, # Sidechain Args design_ban_S: Optional[List[str]] = None, design_method: Literal["potts", "autoregressive"] = "potts", design_selection: Optional[Union[str, torch.Tensor]] = None, design_t: Optional[float] = 0.5, temperature_S: float = 0.01, temperature_chi: float = 1e-3, top_p_S: Optional[float] = None, regularization: Optional[str] = "LCP", potts_mcmc_depth: int = 500, potts_proposal: Literal["dlmc", "chromatic"] = "dlmc", potts_symmetry_order: int = None, verbose: bool = False, ) -> Union[ Union[Protein, List[Protein]], Tuple[Union[Protein, List[Protein]], dict] ]: """ Performs Backbone Sampling and Sequence Design and returns a Protein or list of Proteins. Optionally this method can return additional arguments to show details of the sampling procedure. Args: Backbone sampling: samples (int, optional): The number of proteins to sample. Default is 1. steps (int, optional): The number of integration steps for the SDE. Default is 500. chain_lengths (List[int], optional): The lengths of the protein chains. Default is [100]. conditioner (Conditioner, optional): The conditioner object that provides the conditioning information. Default is None. langevin_isothermal (bool, optional): Whether to use the isothermal version of the Langevin SDE. Default is False. integrate_func (str, optional): The name of the integration function to use. Default is “euler_maruyama”. sde_func (str, optional): The name of the SDE function to use. Defaults to “reverse_sde”. langevin_factor (float, optional): The factor that controls the strength of the Langevin noise. Default is 2. inverse_temperature (float, optional): The inverse temperature parameter for the SDE. Default is 10. protein_init (Protein, optional): The initial protein state. Defaults to None. full_output (bool, optional): Whether to return the full outputs of the SDE integration, including the protein sample trajectory, the Xhat trajectory (the trajectory of the preceived denoising target) and the Xunc trajectory (the trajectory of the unconditional sample path). Default is False. initialize_noise (bool, optional): Whether to initialize the noise for the SDE integration. Default is True. tspan (List[float], optional): The time span for the SDE integration. Default is (1.0, 0.001). trajectory_length (int, optional): The number of sampled steps in the trajectory output. Maximum is `steps`. Default 200. **kwargs: Additional keyword arguments for the integration function. Sequence and sidechain sampling: design_ban_S (list of str, optional): List of amino acid single-letter codes to ban, e.g. `["C"]` to ban cysteines. design_method (str, optional): Specifies which method to use for design. Can be `potts` and `autoregressive`. Default is `potts`. design_selection (str, optional): Clamp selection for conditioning on a subsequence during sequence sampling. Can be 1) a PyMOl-like selection string (https://pymolwiki.org/index.php/Property_Selectors) or 2) a binary design mask indicating positions with shape `(num_batch, num_residues)`. 1. indicating the residue to be designed and 0. indicates the residue will be masked. e.g. design_selection = torch.Tensor([[0., 1. ,1., 0., 1. ... ]]) or 3) position-specific valid amino acid choices with shape `(num_batch, num_residues, num_alphabet)`. design_t (float or torch.Tensor, optional): Diffusion time for models trained with diffusion augmentation of input structures. Setting `t=0` or `t=None` will condition the model to treat the structure as exact coordinates, while values of `t > 0` will condition the model to treat structures as though they were drawn from noise-augmented ensembles with that noise level. For robust design (default) we recommend `t=0.5`, or for literal design we recommend `t=0.0`. May be a float or a tensor of shape `(num_batch)`. temperature_S (float, optional): Temperature for sequence sampling. Default 0.01. temperature_chi (float, optional): Temperature for chi angle sampling. Default 1e-3. top_p_S (float, optional): Top-p sampling cutoff for autoregressive sampling. regularization (str, optional): Complexity regularization for sampling. potts_mcmc_depth (int, optional): Depth of sampling (number of steps per alphabet letter times number of sites) per cycle. potts_proposal (str): MCMC proposal for Potts sampling. Currently implemented proposals are `dlmc` (default) for Discrete Langevin Monte Carlo [1] or `chromatic` for graph-colored block Gibbs sampling. [1] Sun et al. Discrete Langevin Sampler via Wasserstein Gradient Flow (2023). potts_symmetry_order (int, optional): Symmetric design. The first `(num_nodes // symmetry_order)` residues in the protein system will be variable, and all consecutively tiled sets of residues will be locked to these during decoding. Internally this is accomplished by summing the parameters Potts model under a symmetry constraint into this reduced sized system and then back imputing at the end. Currently only implemented for Potts models. Returns: proteins: Sampled `Protein` object or list of sampled `Protein` objects in the case of multiple outputs. full_output_dictionary (dict, optional): Additional outputs if `full_output=True`. """ # Get KWARGS input_args = locals() # Dynamically get acceptable kwargs for each method backbone_keys = set(inspect.signature(self._sample).parameters) design_keys = set(inspect.signature(self.design).parameters) # Filter kwargs for each method using dictionary comprehension backbone_kwargs = {k: input_args[k] for k in input_args if k in backbone_keys} design_kwargs = {k: input_args[k] for k in input_args if k in design_keys} # Perform Sampling sample_output = self._sample(**backbone_kwargs) if full_output: protein_sample, output_dictionary = sample_output else: protein_sample = sample_output output_dictionary = None # Perform Design if design_method is None: proteins = protein_sample else: if isinstance(protein_sample, list): proteins = [ self.design(protein, **design_kwargs) for protein in protein_sample ] else: proteins = self.design(protein_sample, **design_kwargs) # Perform conditioner postprocessing if (conditioner is not None) and hasattr(conditioner, "_postprocessing_"): proteins, output_dictionary = self._postprocess( conditioner, proteins, output_dictionary ) if full_output: return proteins, output_dictionary else: return proteins def _postprocess(self, conditioner, proteins, output_dictionary): if output_dictionary is None: if isinstance(proteins, list): proteins = [ conditioner._postprocessing_(protein) for protein in proteins ] else: proteins = conditioner._postprocessing_(proteins) else: if isinstance(proteins, list): p_dicts = [] proteins = [] for i, protein in enumerate(proteins): p_dict = {} for key, value in output_dictionary.items(): p_dict[key] = value[i] protein, p_dict = conditioner._postprocessing_(protein, p_dict) p_dicts.append(p_dict) # Merge Output Dictionaries output_dictionary = defaultdict(list) for p_dict in p_dicts: for k, v in p_dict.items(): output_dictionary[k].append(v) else: proteins, output_dictionary = conditioner._postprocessing_( proteins, output_dictionary ) return proteins, output_dictionary def _sample( self, samples: int = 1, steps: int = 500, chain_lengths: List[int] = [100], tspan: List[float] = (1.0, 0.001), protein_init: Protein = None, conditioner: Optional[nn.Module] = None, langevin_factor: float = 2, langevin_isothermal: bool = False, inverse_temperature: float = 10, initialize_noise: bool = True, integrate_func: Literal["euler_maruyama", "heun"] = "euler_maruyama", sde_func: Literal["langevin", "reverse_sde", "ode"] = "reverse_sde", trajectory_length: int = 200, full_output: bool = False, **kwargs, ) -> Union[ Tuple[List[Protein], List[Protein]], Tuple[List[Protein], List[Protein], List[Protein], List[Protein]], ]: """Samples backbones given chain lengths by integrating SDEs. 其作用是对蛋白质的结构进行采样。该方法通过集成随机微分方程(SDE)来模拟蛋白质的动态行为 Args: samples (int, optional): The number of proteins to sample. Default is 1. steps (int, optional): The number of integration steps for the SDE. Default is 500. chain_lengths (List[int], optional): The lengths of the protein chains. Default is [100]. conditioner (Conditioner, optional): The conditioner object that provides the conditioning information. Default is None. langevin_isothermal (bool, optional): Whether to use the isothermal version of the Langevin SDE. Default is False. integrate_func (str, optional): The name of the integration function to use. Default is `euler_maruyama`. sde_func (str, optional): The name of the SDE function to use. Default is “reverse_sde”. langevin_factor (float, optional): The factor that controls the strength of the Langevin noise. Default is 2. inverse_temperature (float, optional): The inverse temperature parameter for the SDE. Default is 10. protein_init (Protein, optional): The initial protein state. Default is None. full_output (bool, optional): Whether to return the full outputs of the SDE integration, including Xhat and Xunc. Default is False. initialize_noise (bool, optional): Whether to initialize the noise for the SDE integration. Default is True. tspan (List[float], optional): The time span for the SDE integration. Default is (1.0, 0.001). trajectory_length (int, optional): The number of sampled steps in the trajectory output. Maximum is `steps`. Default 200. **kwargs: Additional keyword arguments for the integration function. Returns: proteins: Sampled `Protein` object or list of sampled `Protein` objects in the case of multiple outputs. full_output_dictionary (dict, optional): Additional outputs if `full_output=True`. """ if protein_init is not None: X_unc, C_unc, S_unc = protein_init.to_XCS() else: X_unc, C_unc, S_unc = self._init_backbones(samples, chain_lengths) """ 如果提供了初始蛋白质状态,方法将使用它。 否则,它将调用 _init_backbones 方法来初始化蛋白质的背骨。 然后,它将调用 backbone_network.sample_sde 方法来采样SDE。 """ outs = self.backbone_network.sample_sde( C_unc, X_init=X_unc, conditioner=conditioner, tspan=tspan, langevin_isothermal=langevin_isothermal, integrate_func=integrate_func, sde_func=sde_func, langevin_factor=langevin_factor, inverse_temperature=inverse_temperature, N=steps, initialize_noise=initialize_noise, **kwargs, ) if S_unc.shape != outs["C"].shape: S = torch.zeros_like(outs["C"]).long() else: S = S_unc """ 这段代码的目的是确保 `S` 和 `outs["C"]` 的形状相同,这可能是因为在后续的计算中需要它们的形状相同。 如果 `S_unc` 的形状与 `outs["C"]` 不同,那么创建一个新的零张量来代替 `S_unc`。 如果它们的形状不同,`assert` 语句会引发 `AssertionError` 异常。 """ assert S.shape == outs["C"].shape proteins = [ Protein.from_XCS(outs_X[None, ...], outs_C[None, ...], outs_S[None, ...]) for outs_X, outs_C, outs_S in zip(outs["X_sample"], outs["C"], S) ] if samples == 1: proteins = proteins[0] if not full_output: return proteins else: outs["S"] = S trajectories = self._format_trajectory( outs, "X_trajectory", trajectory_length ) trajectories_Xhat = self._format_trajectory( outs, "Xhat_trajectory", trajectory_length ) # use unconstrained C and S for Xunc_trajectory outs["S"] = S_unc outs["C"] = C_unc trajectories_Xunc = self._format_trajectory( outs, "Xunc_trajectory", trajectory_length ) if samples == 1: full_output_dictionary = { "trajectory": trajectories[0], "Xhat_trajectory": trajectories_Xhat[0], "Xunc_trajectory": trajectories_Xunc[0], } else: full_output_dictionary = { "trajectory": trajectories, "Xhat_trajectory": trajectories_Xhat, "Xunc_trajectory": trajectories_Xunc, } return proteins, full_output_dictionary def _format_trajectory(self, outs, key, trajectory_length): trajectories = [ Protein.from_XCS_trajectory( [ outs_X[i][None, ...] for outs_X in self._resample_trajectory( trajectory_length, outs[key] ) ], outs_C[None, ...], outs_S[None, ...], ) for i, (outs_C, outs_S) in enumerate(zip(outs["C"], outs["S"])) ] return trajectories def _resample_trajectory(self, trajectory_length, trajectory): if trajectory_length < 0: raise ValueError( "The trajectory length must fall on the interval [0, sample_steps]." ) n = len(trajectory) trajectory_length = min(n, trajectory_length) idx = torch.linspace(0, n - 1, trajectory_length).long() return [trajectory[i] for i in idx] def design( self, protein: Protein, design_ban_S: Optional[List[str]] = None, design_method: Literal["potts", "autoregressive"] = "potts", design_selection: Optional[Union[str, torch.Tensor]] = None, design_t: Optional[float] = 0.5, temperature_S: float = 0.01, temperature_chi: float = 1e-3, top_p_S: Optional[float] = None, regularization: Optional[str] = "LCP", potts_mcmc_depth: int = 500, potts_proposal: Literal["dlmc", "chromatic"] = "dlmc", potts_symmetry_order: Optional[int] = None, verbose: bool = False, ) -> Protein: """Performs sequence design and repacking on the specified Protein object and returns an updated copy. Args: protein (Protein): The protein to design. design_ban_S (list of str, optional): List of amino acid single-letter codes to ban, e.g. `["C"]` to ban cysteines. design_method (str, optional): Specifies which method to use for design. valid methods are potts and autoregressive. Default is potts. design_selection (str or torch.Tensor, optional): Clamp selection for conditioning on a subsequence during sequence sampling. Can be either a selection string or a binary design mask indicating positions to be sampled with shape `(num_batch, num_residues)` or position-specific valid amino acid choices with shape `(num_batch, num_residues, num_alphabet)`. design_t (float or torch.Tensor, optional): Diffusion time for models trained with diffusion augmentation of input structures. Setting `t=0` or `t=None` will condition the model to treat the structure as exact coordinates, while values of `t > 0` will condition the model to treat structures as though they were drawn from noise-augmented ensembles with that noise level. For robust design (default) we recommend `t=0.5`, or for literal design we recommend `t=0.0`. May be a float or a tensor of shape `(num_batch)`. temperature_S (float, optional): Temperature for sequence sampling. Default 0.01. temperature_chi (float, optional): Temperature for chi angle sampling. Default 1e-3. top_p_S (float, optional): Top-p sampling cutoff for autoregressive sampling. regularization (str, optional): Complexity regularization for sampling. potts_mcmc_depth (int, optional): Depth of sampling (number of steps per alphabet letter times number of sites) per cycle. potts_proposal (str): MCMC proposal for Potts sampling. Currently implemented proposals are `dlmc` (default) for Discrete Langevin Monte Carlo [1] or `chromatic` for graph-colored block Gibbs sampling. [1] Sun et al. Discrete Langevin Sampler via Wasserstein Gradient Flow (2023). potts_symmetry_order (int, optional): Symmetric design. The first `(num_nodes // symmetry_order)` residues in the protein system will be variable, and all consecutively tiled sets of residues will be locked to these during decoding. Internally this is accomplished by summing the parameters Potts model under a symmetry constraint into this reduced sized system and then back imputing at the end. Currently only implemented for Potts models. Returns: A new Protein object with updated sequence and, optionally, side-chains. """ protein = copy.deepcopy(protein) protein.canonicalize() X, C, S = protein.to_XCS() if design_method not in set(["potts", "autoregressive"]): raise NotImplementedError( "Valid design methods are potts and autoregressive, recieved" f" {design_method}" ) # Optional sequence clamping mask_sample = None if design_selection is not None: # 判断design_selection是否为字符串 if isinstance(design_selection, str): design_selection = protein.get_mask(design_selection) mask_sample = design_selection X_sample, S_sample, _ = self.design_network.sample( X, C, S, t=design_t, mask_sample=mask_sample, temperature_S=temperature_S, temperature_chi=temperature_chi, ban_S=design_ban_S, sampling_method=design_method, regularization=regularization, potts_sweeps=potts_mcmc_depth, potts_proposal=potts_proposal, verbose=verbose, symmetry_order=potts_symmetry_order, ) protein.sys.update_with_XCS(X_sample, C=None, S=S_sample) return protein def _design_ar(self, protein, alphabet=None, temp_S=0.1, temp_chi=1e-3): X, C, S = protein.to_XCS() ban_S = None if alphabet is not None: ban_S = set(AA20_3).difference(alphabet) X_sample, S_sample, _, _ = self.design_network_ar.sample( X, C, S, temperature_S=temp_S, temperature_chi=temp_chi, return_scores=True, ban_S=ban_S, ) protein.sys.update_with_XCS(X_sample, C=None, S=S_sample) return protein def pack( self, protein: Protein, temperature_chi: float = 1e-3, clamped: bool = False ) -> Protein: """Packs Sidechains of a Protein using the design network Args: protein (Protein): The Protein to repack. temperature_chi (float): Temperature parameter for sampling chi angles. Even if a high temperature sequence is sampled, this is recommended to always be low. Default is `1E-3`. clamped (bool): If `True`, no sampling is done and the likelihood values will be calculated for the input sequence and structure. Used for validating the sequential versus parallel decoding modes. Default is `False` Returns: Protein: The Repacked Protein """ X, C, S = protein.to_XCS(all_atom=False) X_repack, _, _ = self.design_network.pack( X, C, S, temperature_chi=temperature_chi, clamped=clamped, return_scores=True, ) # Convert S_repack to seq protein.sys.update_with_XCS(X_repack, C=None, S=S) return protein def score_backbone( self, proteins: Union[List[Protein], Protein], num_samples: int = 50, tspan: List[float] = [1e-4, 1.0], ) -> Union[List[dict], dict]: """ Score Proteins with the following chroma scores: elbo: elbo_X: rmsd_ratio: fragment_mse: neighborhood_mse: distance_mse: hb_local: hb_nonlocal: Args: proteins (list of Protein or Protein): The Proteins to be scored. num_samples (int, optional): The number of time points to calculate the metrics. Default 50. tspan (list of float, optional): A list of two times [t_initial, t_final] which represent the range of times to draw samples. Default [1e-4, 1.0]. Returns: List of dict or dict: A dictionary containing all of the score data. Scores are returned as named tuples. """ # Extract XCS for scoring device = next(self.parameters()).device if isinstance(proteins, list): X, C, S = self._protein_list_to_XCS(proteins, device=device) else: X, C, S = proteins.to_XCS(device=device) # Generate Scores metrics, metrics_samples = self.backbone_network.estimate_metrics( X, C, return_samples=True, num_samples=num_samples, tspan=tspan ) if isinstance(proteins, list): metric_dictionary = [ self._make_metric_dictionary(metrics, metrics_samples, idx=i) for i in range(len(proteins)) ] else: metric_dictionary = self._make_metric_dictionary(metrics, metrics_samples) return metric_dictionary def score_sequence( self, proteins: Union[List[Protein], Protein], t: Optional[torch.Tensor] = None, ) -> dict: """ Scores designed Proteins with the following Chroma scores: - -log(p) for sequences and chi angles - average RMSD and number of clashes per side-chain For further details on the scores computed, see chroma.models.graph_design.GraphDesign.loss. Args: proteins (list of Protein or Protein): The Proteins to be scored. t (torch.Tensor, optional): Diffusion timesteps corresponding to noisy input backbones, of shape `(num_batch)`. Default is no noise. Returns: List of dict or dict: A dictionary containing all of the score data. Scores are returned as named tuples. """ # Extract XCS for scoring device = next(self.parameters()).device if isinstance(proteins, list): X, C, S = self._protein_list_to_XCS(proteins, all_atom=True, device=device) output_scores = [{} for _ in range(len(proteins))] else: X, C, S = proteins.to_XCS(all_atom=True, device=device) output_scores = {} losses = self.design_network.loss(X, C, S, t=t, batched=False) # each value in the losses dictionary contains the results for all proteins for name, loss_tensor in losses.items(): loss_list = [_t.squeeze() for _t in loss_tensor.split(1)] if isinstance(proteins, list): for i, loss in enumerate(loss_list): output_scores[i][name] = loss else: output_scores[name] = loss_list[0] return output_scores def _protein_list_to_XCS(self, list_of_proteins, all_atom=False, device=None): """Package up proteins with padding""" # get all the XCS stuff Xs, Cs, Ss = zip( *[protein.to_XCS(all_atom=all_atom) for protein in list_of_proteins] ) # Get Max Dims for Xs, Cs, Ss Dmax = max([C.shape[1] for C in Cs]) device = Xs[0].device # Augment each with zeros with torch.no_grad(): X = torch.cat( [nn.functional.pad(X, (0, 0, 0, 0, 0, Dmax - X.shape[1])) for X in Xs] ) C = torch.cat([nn.functional.pad(C, (0, Dmax - C.shape[1])) for C in Cs]) S = torch.cat([nn.functional.pad(S, (0, Dmax - S.shape[1])) for S in Ss]) return X, C, S def score( self, proteins: Union[List[Protein], Protein], num_samples: int = 50, tspan: List[float] = [1e-4, 1.0], ) -> Tuple[Union[List[dict], dict], dict]: backbone_scores = self.score_backbone(proteins, num_samples, tspan) sequence_scores = self.score_sequence(proteins) if isinstance(proteins, list): for ss in sequence_scores: ss["t_seq"] = ss.pop("t") return [bs | ss for bs, ss in zip(backbone_scores, sequence_scores)] else: sequence_scores["t_seq"] = sequence_scores.pop("t") return backbone_scores | sequence_scores def _make_metric_dictionary(self, metrics, metrics_samples, idx=None): # Process Metrics into a Single Dictionary metric_dictionary = {} for k, vs in metrics_samples.items(): if k == "t": metric_dictionary["t"] = vs elif k in ["X", "X0_pred"]: if idx is None: v = metrics[k] else: vs = vs[idx] v = metrics[k][idx] score = namedtuple(k, ["value", "samples"]) metric_dictionary[k] = score(value=v, samples=vs) else: if idx is None: v = metrics[k].item() else: vs = vs[idx] v = metrics[k][idx].item() vs = [i.item() for i in vs] score = namedtuple(k, ["score", "subcomponents"]) metric_dictionary[k] = score(score=v, subcomponents=vs) return metric_dictionary def _init_backbones(self, num_backbones, length_backbones): # Start with purely alpha backbones X = ProteinBackbone( num_batch=num_backbones, num_residues=sum(length_backbones), init_state="alpha", )() C = torch.cat( [torch.full([rep], i + 1) for i, rep in enumerate(length_backbones)] ).expand(X.shape[0], -1) S = torch.zeros_like(C) return [i.to(next(self.parameters()).device) for i in [X, C, S]]