# Copyright Generate Biomedicines, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import numpy as np import torch from PIL import Image, ImageDraw, ImageFont from sklearn.decomposition import PCA from torch import nn import chroma from chroma.constants import AA20 from chroma.data import Protein from chroma.layers.structure import backbone def letter_to_point_cloud( letter="G", width_pixels=35, font = "/home/user/app/chroma_gen/chroma/utility/LSR.ttf", depth_ratio=0.15, fontsize_ratio=1.2, stroke_width=1, margin=0.5, max_points=2000, ): """Build a point cloud from a letter""" depth = int(depth_ratio * width_pixels) fontsize = int(fontsize_ratio * width_pixels) font = ImageFont.truetype(font,fontsize) ascent, descent = font.getmetrics() text_width = font.getmask(letter).getbbox()[2] text_height = font.getmask(letter).getbbox()[3] + descent margin_width = int(text_width * margin) margin_height = int(text_height * margin) image_size = [text_width + margin_width, text_height + margin_height] image = Image.new("RGBA", image_size, (255, 255, 255)) draw = ImageDraw.Draw(image) draw.text( (margin_width // 2, margin_height // 2), letter, (0, 0, 0), font=font, stroke_width=stroke_width, stroke_fill="black", ) A = np.asarray(image).mean(-1) A = A < 100.0 V = np.ones(list(A.shape[:2]) + [depth]) * A[:, :, None] X_point_cloud = np.stack(np.nonzero(V), 1) # Uniform dequantization X_point_cloud = X_point_cloud + np.random.rand(*X_point_cloud.shape) if max_points is not None and X_point_cloud.shape[0] > max_points: np.random.shuffle(X_point_cloud) X_point_cloud = X_point_cloud[:max_points, :] return X_point_cloud def point_cloud_rescale( X, num_residues, neighbor_k=8, volume_per_residue=128.57, scale_ratio=0.4 ): """Rescale target coordinates to occupy protein-sized volume""" # Use heuristic for radius value from the average m-th nearest neighbor # This was tuned empirically for target problems (could be optimized on the fly as LB estimate) D = np.sqrt(np.square(X[None, :] - X[:, None]).sum(-1)) radius = 0.5 * np.sort(D, axis=1)[:, neighbor_k].mean() diameter = D.max() # Estimate initial volume with 2nd order inclusion exclusion V = point_cloud_volume(X, radius) # Compute target volume, which scales linearly with number of residues V_target = num_residues * volume_per_residue scale_factor = (scale_ratio * V_target / V) ** (1.0 / 3.0) X_rescale = scale_factor * X cutoff_D = scale_factor * radius return X_rescale, cutoff_D def point_cloud_volume(X, radius): """Estimate the volume of a point cloud given sphere radii""" N = X.shape[0] # Volume estimation - One body volumes V_1 = N * (4.0 / 3.0) * np.pi * radius ** 3 # Volume estimation - 2nd order overlaps D = np.sqrt(np.square(X[None, :] - X[:, None]).sum(-1)) overlap_ij = ( (D < 2.0 * radius) * (np.pi / 12.0) * (4.0 * radius + D) * (2.0 * radius - D) ** 2 ) V_2 = np.tril(overlap_ij, k=-1).sum() # Inclusion-Exclusion Principle volume = V_1 - V_2 return volume def plane_split_protein(X=None, C=None, protein=None, mask_percent=0.5): if protein is None: assert X is not None and C is not None else: X, C, _ = protein.to_XCS() X = X[:, :, :4, :] X = backbone.center_X(X, C) points = X[C > 0].reshape(-1, 3) pca = PCA(n_components=1) normal = torch.from_numpy( pca.fit_transform(points.detach().cpu().numpy().transpose(1, 0)) ).to(X.device) c_alphas = X[:, :, 1, :] c = 0 tries = 0 def percent_masked(c): C_mask = ((c_alphas @ normal) > c).squeeze(-1) & (C > 0) return (~C_mask).float().sum().item() / (C > 0).sum().item() # In the first stage we find the minimum C such that all of the residues # lie on one side of the plane (c_alphas @ normal = c) while (percent_masked(c) < 1.0) and (tries < 300000): tries += 1 c += 100 # Now we drag the plane back until percent_masked - masked_percent is small. size = X.size(1) threshold = 0.1 if size < 100 else 0.05 if size < 500 else 0.01 tries = 0 while (np.abs(percent_masked(c) - mask_percent) > threshold) and (tries < 300000): c -= 100 tries += 1 if tries >= 300000: print( "Tried and failed to split protein by plane to grab" f" {mask_percent} residues." ) c = 0 C_mask = ((c_alphas @ normal) > c).squeeze(-1) & (C > 0) print( f"Returning {100 * percent_masked(0.0):.2f} percent residues masked" " instead." ) else: C_mask = ((c_alphas @ normal) > c).squeeze(-1) & (C > 0) print( f"Split protein by plane, masking {100 * percent_masked(c):.2f} percent of" " residues." ) return C_mask def export_potts_evzoom( outfile: str, chroma: nn.Module, protein: Protein, t: float = 0.5, alphabet_reorder="DEKRHQNSTPGAVILMCFWY", element_cutoff_percentile: float = 0.95, norm_cutoff_fraction: float = 0.98, logo_cutoff_fraction: float = 0.9, ): """Build EVzoom visualization given Chroma and a protein. EVzoom files can be dragged and dropped onto a viewer at EVzoom.org Args: outfile (str): File destination for outputting EVzoom json data. Should end in `.json`. chroma (nn.Module): Chroma model instance. protein (Protein): Protein t (float): Diffusion time for evaluating ChromaDesign Potts models. alphabet_reorder (str): Amino acid ordering for EVzoom output. element_cutoff_percentile (float): Percentile on (0,1) at which to clip `J_ij` element-wise values for visualization. norm_cutoff_fraction (float): Only visualize the top `i,j` pairs whose norms account for this fraction of the sum of all norm values. logo_cutoff_fraction (float): Only visualize the amino acids whose cumulative marginal probabilities account for this total fraction per position. """ if not outfile.endswith(".json"): raise Exception("Destination should be a json file") alphabet = AA20 X, C, S = protein.to_XCS() h, J, edge_idx = chroma.design_network.predict_potts(X, C, t=t) log_probs = chroma.design_network.predict_marginals(X, C, t=t)[0] sequence = "".join([alphabet[ax] for ax in S.cpu().data.numpy().flatten().tolist()]) permute_ix = np.array([alphabet.index(c) for c in alphabet_reorder]) evz_data = { "map": {"letters": sequence, "indices": list(range(len(sequence)))}, "logo": [], "couplings": [], } h = -h[0, :, :].data.cpu().numpy() J = -J[0, :, :, :, :].data.cpu().numpy() edge_idx = edge_idx[0, :, :].data.cpu().numpy() log_probs = log_probs[0, :, :].data.cpu().numpy() N = J.shape[0] k = J.shape[1] # Compute entropy P = np.exp(log_probs) P = P / np.sum(P, 1, keepdims=True) H = -np.sum(P * np.log2(P), 1) # Determine top residues per position P_sort = np.sort(P, axis=-1)[:, ::-1] CDF = P_sort.cumsum(axis=-1) ix_valid = CDF <= logo_cutoff_fraction ix = ix_valid.sum(axis=1) p_cutoff_logo = P_sort[np.arange(N), ix] P_mask = P >= p_cutoff_logo[:, np.newaxis] # Export logo for i in range(N): bits = (np.log2(20.0) - H[i]) * P[i] aa_idx = np.argsort(bits)[::-1] data_i = [] for a_i in aa_idx: if P_mask[i, a_i]: data_i.append({"code": alphabet[a_i], "bits": str(bits[a_i])}) evz_data["logo"].append(data_i) # Compute cutoff automatically norms = (J ** 2).sum(axis=(2, 3)) norms_descend = np.sort(norms.flatten())[::-1] norms_cumsum = np.cumsum(norms_descend) valid_norms = norms_cumsum / norms_cumsum[-1] < norm_cutoff_fraction cutoff = norms_descend[valid_norms].min() # Export couplings for i in range(N): for j in range(k): j_idx = edge_idx[i, j] score = np.sqrt(np.mean(J[i, j, :, :] ** 2)) if score > cutoff: ii = [ix for ix in permute_ix if P_mask[i, ix]] jj = [ix for ix in permute_ix if P_mask[j_idx, ix]] J_ij = J[i, j, :, :] J_ij = J_ij[ii][:, jj] J_ij = np.clip( J_ij, np.percentile(J_ij, 100 * (1 - element_cutoff_percentile)), np.percentile(J_ij, element_cutoff_percentile * 100), ) J_ij = np.round(J_ij, 3) data_ij = { "i": i + 1, "j": str(j_idx + 1), "score": str(score), "iC": [alphabet[ix] for ix in ii], "jC": [alphabet[ix] for ix in jj], "matrix": J_ij.tolist(), } evz_data["couplings"].append(data_ij) with open(outfile, "w") as file: file.write(json.dumps(evz_data))