# Copyright Generate Biomedicines, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Layers for building graph representations of protein structure. This module contains pytorch layers for representing protein structure as a graph with node and edge features based on geometric information. The graph features are differentiable with respect to input coordinates and can be used for building protein scoring functions and optimizing protein geometries natively in pytorch. """ import json import os import tempfile from typing import Optional, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from chroma.data.protein import Protein from chroma.layers import graph from chroma.layers.basic import FourierFeaturization, PositionalEncoding from chroma.layers.structure import backbone, geometry, transforms class ProteinFeatureGraph(nn.Module): """Graph featurizer for protein chains and complexes. This module builds graph representations of protein structures that are differentiable with respect to input coordinates and invariant with respect to global rotations and translations. It takes as input a batch of protein backbones (single chains or complexes), constructs a sparse graph with residues as nodes, and featurizes the backbones in terms of node and edge feature tensors. The graph representation has 5 components: 1. Node features `node_h` representing residues in the protein. 2. Edge features `edge_h` representing relationships between residues. 3. Index map `edge_idx` representing graph topology. 4. Node mask `mask_i` that specifies which nodes are present. 5. Edge mask `mask_ij` that specifies which edges are present. Criteria for constructing the graph currently include k-Nearest Neighbors or distance-weighted edge sampling. Node and edge features are specified as tuples to make it simpler to add additional features and options while retaining backwards compatibility. Specifically, each node or edge feature type can be added to the list either in default configuration by a `'feature_name'` keyword, or in modified form with a `('feature_name', feature_kwargs)` tuple. Example usage: graph = ProteinFeatureGraph( graph_type='knn', node_features=('dihedrals',), edge_features=[ 'chain_distance', ('dmat_6mer', {'D_function': 'log'}) ] ) node_h, edge_h, edge_idx, mask_i, mask_ij = graph(X, C) This builds a kNN graph with dihedral angles as node features and 6mer interatomic distance matrices (process) 6mers, where the options for post-processing the 6mers are passed as a kwargs dict. Args: dim_nodes (int): Hidden dimension of node features. dim_edges (int): Hidden dimension of edge features. num_neighbors (int): Maximum degree of the graph. graph_kwargs (dict): Arguments for graph construction. Default is None. node_features (list): List of node feature strings and optional args. Valid feature strings are `{internal_coords}`. edge_features (list): List of node feature strings and optional args. Valid feature strings are `{'distances_6mer','distances_chain'}`. centered (boolean): Flag for enabling feature centering. If `True`, the features will be will centered by subtracting an empirical mean that was computed on the reference PDB `centered_pdb`. The statistics are per-dimension of every node and edge feature. If they have not previously been computed, the PDB will be downloaded, featurized, and aggregated into local statistics that are cached in the repo. centered_pdb (str): PDB code for the reference PDB to compute some empirical feature statistics from. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, 4, 3)`. The standard atom indices for for the the third dimension are PDB order (`[N, CA, C, O]`). C (LongTensor, optional): Chain map with shape `(num_batch, num_residues)`. The chain map codes positions as `0` when masked, poitive integers for chain indices, and negative integers to represent missing residues of the corresponding positive integers. custom_D (Tensor, optional): Pre-computed custom distance map for graph construction `(numb_batch,num_residues,num_residues)`. If present, this will override the behavior of `graph_type` and used as the distances for k-nearest neighbor graph construction. custom_mask_2D (Tensor, optional): Custom 2D mask to apply to `custom_D` with shape `(numb_batch,num_residues,num_residues)`. Outputs: node_h (torch.Tensor): Node features with shape `(num_batch, num_residues, dim_nodes)`. edge_h (torch.Tensor): Edge features with shape `(num_batch, num_residues, num_neighbors, dim_edges)`. edge_idx (torch.LongTensor): Edge indices for neighbors with shape `(num_batch, num_residues, num_neighbors)`. mask_i (torch.Tensor): Node mask with shape `(num_batch, num_residues)`. mask_ij (torch.Tensor): Edge mask with shape `(num_batch, num_nodes, num_neighbors)`. """ def __init__( self, dim_nodes: int, dim_edges: int, num_neighbors: int = 30, graph_kwargs: dict = None, node_features: tuple = ("internal_coords",), edge_features: tuple = ("distances_6mer", "distances_chain"), centered: bool = True, centered_pdb: str = "2g3n", ): super(ProteinFeatureGraph, self).__init__() self.dim_nodes = dim_nodes self.dim_edges = dim_edges self.num_neighbors = num_neighbors graph_kwargs = graph_kwargs if graph_kwargs is not None else {} self.graph_builder = ProteinGraph(num_neighbors, **graph_kwargs) self.node_features = node_features self.edge_features = edge_features def _init_layer(layer_dict, features): # Parse option string custom_args = not isinstance(features, str) key = features[0] if custom_args else features kwargs = features[1] if custom_args else {} return layer_dict[key](**kwargs) # Node feature compilation node_dict = { "internal_coords": NodeInternalCoords, "cartesian_coords": NodeCartesianCoords, "radii": NodeRadii, } self.node_layers = nn.ModuleList( [_init_layer(node_dict, option) for option in self.node_features] ) # Edge feature compilation edge_dict = { "distances_6mer": EdgeDistance6mer, "distances_2mer": EdgeDistance2mer, "orientations_2mer": EdgeOrientation2mer, "position_2mer": EdgePositionalEncodings, "distances_chain": EdgeDistanceChain, "orientations_chain": EdgeOrientationChain, "cartesian_coords": EdgeCartesianCoords, "random_fourier_2mer": EdgeRandomFourierFeatures2mer, } self.edge_layers = nn.ModuleList( [_init_layer(edge_dict, option) for option in self.edge_features] ) # Load feature centering params as buffers self.centered = centered self.centered_pdb = centered_pdb.lower() if self.centered: self._load_centering_params(self.centered_pdb) """ Storing separate linear transformations for each layer, rather than concat + one large linear, provides a more even weighting of the different input features when used with standard weight initialization. It has the specific effect actually re-weighting the weight variance based on the number of input features for each feature type. Otherwise, the relative importance of each feature goes with the number of feature dimensions. """ self.node_linears = nn.ModuleList( [nn.Linear(l.dim_out, self.dim_nodes) for l in self.node_layers] ) self.edge_linears = nn.ModuleList( [nn.Linear(l.dim_out, self.dim_edges) for l in self.edge_layers] ) return def forward( self, X: torch.Tensor, C: torch.Tensor, edge_idx: Optional[torch.LongTensor] = None, mask_ij: torch.Tensor = None, custom_D: Optional[torch.Tensor] = None, custom_mask_2D: Optional[torch.Tensor] = None, ) -> Tuple[ torch.Tensor, torch.Tensor, torch.LongTensor, torch.Tensor, torch.Tensor ]: mask_i = chain_map_to_mask(C) if mask_ij is None or edge_idx is None: edge_idx, mask_ij = self.graph_builder( X, C, custom_D=custom_D, custom_mask_2D=custom_mask_2D ) # Aggregate node layers node_h = None for i, layer in enumerate(self.node_layers): node_h_l = layer(X, edge_idx, C) if self.centered: node_h_l = node_h_l - self.__getattr__(f"node_means_{i}") node_h_l = self.node_linears[i](node_h_l) node_h = node_h_l if node_h is None else node_h + node_h_l if node_h is None: node_h = torch.zeros(list(X.shape[:2]) + [self.dim_nodes], device=X.device) # Aggregate edge layers edge_h = None for i, layer in enumerate(self.edge_layers): edge_h_l = layer(X, edge_idx, C) if self.centered: edge_h_l = edge_h_l - self.__getattr__(f"edge_means_{i}") edge_h_l = self.edge_linears[i](edge_h_l) edge_h = edge_h_l if edge_h is None else edge_h + edge_h_l if edge_h is None: edge_h = torch.zeros(list(X.shape[:2]) + [self.dim_nodes], device=X.device) # Apply masks node_h = mask_i.unsqueeze(-1) * node_h edge_h = mask_ij.unsqueeze(-1) * edge_h return node_h, edge_h, edge_idx, mask_i, mask_ij def _load_centering_params(self, reference_pdb: str): basepath = os.path.join(tempfile.gettempdir(), "generate", "params") if not os.path.exists(basepath): os.makedirs(basepath) filename = f"centering_{reference_pdb}.params" self.centering_file = os.path.join(basepath, filename) key = ( reference_pdb + ";" + json.dumps(self.node_features) + ";" + json.dumps(self.edge_features) ) # Attempt to load saved centering params, otherwise compute and cache json_line = None with open(self.centering_file, "a+") as f: prefix = key + "\t" f.seek(0) for line in f: if line.startswith(prefix): json_line = line.split(prefix)[1] break if json_line is not None: print("Loaded from cache") param_dictionary = json.loads(json_line) else: print(f"Computing reference stats for {reference_pdb}") param_dictionary = self._reference_stats(reference_pdb) json_line = json.dumps(param_dictionary) f.write(prefix + "\t" + json_line + "\n") for i, layer in enumerate(self.node_layers): key = json.dumps(self.node_features[i]) tensor = torch.tensor(param_dictionary[key], dtype=torch.float32) tensor = tensor.view(1, 1, -1) self.register_buffer(f"node_means_{i}", tensor) for i, layer in enumerate(self.edge_layers): key = json.dumps(self.edge_features[i]) tensor = torch.tensor(param_dictionary[key], dtype=torch.float32) tensor = tensor.view(1, 1, -1) self.register_buffer(f"edge_means_{i}", tensor) return def _reference_stats(self, reference_pdb): X, C, _ = Protein.from_PDBID(reference_pdb).to_XCS() stats_dict = self._feature_stats(X, C) return stats_dict def _feature_stats(self, X, C, verbose=False, center=False): mask_i = chain_map_to_mask(C) edge_idx, mask_ij = self.graph_builder(X, C) def _masked_stats(feature, mask, dims, verbose=False): mask = mask.unsqueeze(-1) feature = mask * feature sum_mask = mask.sum() mean = feature.sum(dims, keepdim=True) / sum_mask var = torch.sum(mask * (feature - mean) ** 2, dims) / sum_mask std = torch.sqrt(var) mean = mean.view(-1) std = std.view(-1) if verbose: frac = (100.0 * std**2 / (mean**2 + std**2)).type(torch.int32) print(f"Fraction of raw variance: {frac}") return mean, std # Collect statistics stats_dict = {} # Aggregate node layers for i, layer in enumerate(self.node_layers): node_h = layer(X, edge_idx, C) if center: node_h = node_h - self.__getattr__(f"node_means_{i}") mean, std = _masked_stats(node_h, mask_i, dims=[0, 1]) # Store in dictionary key = json.dumps(self.node_features[i]) stats_dict[key] = mean.tolist() # Aggregate node layers for i, layer in enumerate(self.edge_layers): edge_h = layer(X, edge_idx, C) if center: edge_h = edge_h - self.__getattr__(f"edge_means_{i}") mean, std = _masked_stats(edge_h, mask_ij, dims=[0, 1, 2]) # Store in dictionary key = json.dumps(self.edge_features[i]) stats_dict[key] = mean.tolist() # Round to small number of decimal places stats_dict = {k: [round(f, 3) for f in v] for k, v in stats_dict.items()} return stats_dict class ProteinGraph(nn.Module): """Build a graph topology given a protein backbone. Args: num_neighbors (int): Maximum number of neighbors in the graph. distance_atom_type (int): Atom type for computing residue-residue distances for graph construction. Negative values will specify centroid across atom types. Default is `-1` (centroid). cutoff (float): Cutoff distance for graph construction. If not None, mask any edges further than this cutoff. Default is `None`. mask_interfaces (Boolean): Restrict connections only to within chains, excluding-between chain interactions. Default is `False`. criterion (string, optional): Method used for building graph from distances. Currently supported methods are `{knn, random_log, random_linear}`. Default is `knn`. random_alpha (float, optional): Length scale parameter for random graph generation. Default is 3. random_temperature (float, optional): Temperature parameter for random graph sampling. Between 0 and 1 this value will interpolate between a normal k-NN graph and sampling from the graph generation process. Default is 1.0. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, 4, 3)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. custom_D (torch.Tensor, optional): Optional external distance map, for example based on other distance metrics, with shape `(num_batch, num_residues, num_residues)`. custom_mask_2D (torch.Tensor, optional): Optional mask to apply to distances before computing dissimilarities with shape `(num_batch, num_residues, num_residues)`. Outputs: edge_idx (torch.LongTensor): Edge indices for neighbors with shape `(num_batch, num_residues, num_neighbors)`. mask_ij (torch.Tensor): Edge mask with shape `(num_batch, num_nodes, num_neighbors)`. """ def __init__( self, num_neighbors: int = 30, distance_atom_type: int = -1, cutoff: Optional[float] = None, mask_interfaces: bool = False, criterion: str = "knn", random_alpha: float = 3.0, random_temperature: float = 1.0, random_min_local: float = 20, deterministic: bool = False, deterministic_seed: int = 10, ): super(ProteinGraph, self).__init__() self.num_neighbors = num_neighbors self.distance_atom_type = distance_atom_type self.cutoff = cutoff self.mask_interfaces = mask_interfaces self.distances = geometry.Distances() self.knn = kNN(k_neighbors=num_neighbors) self.criterion = criterion self.random_alpha = random_alpha self.random_temperature = random_temperature self.random_min_local = random_min_local self.deterministic = deterministic self.deterministic_seed = deterministic_seed def _mask_distances(self, X, C, custom_D=None, custom_mask_2D=None): mask_1D = chain_map_to_mask(C) mask_2D = mask_1D.unsqueeze(2) * mask_1D.unsqueeze(1) if self.distance_atom_type > 0: X_atom = X[:, :, self.distance_atom_type, :] else: X_atom = X.mean(dim=2) if custom_D is None: D = self.distances(X_atom, dim=1) else: D = custom_D if custom_mask_2D is None: if self.mask_interfaces: mask_2D = torch.eq(C.unsqueeze(1), C.unsqueeze(2)) mask_2D = mask_2D * mask_2D.type(torch.float32) if self.cutoff is not None: mask_cutoff = (D <= self.cutoff).type(torch.float32) mask_2D = mask_cutoff * mask_2D else: mask_2D = custom_mask_2D return D, mask_1D, mask_2D def _perturb_distances(self, D): # Replace distance by log-propensity if self.criterion == "random_log": logp_edge = -3 * torch.log(D) elif self.criterion == "random_linear": logp_edge = -D / self.random_alpha elif self.criterion == "random_uniform": logp_edge = D * 0 else: return D if not self.deterministic: Z = torch.rand_like(D) else: with torch.random.fork_rng(): torch.random.manual_seed(self.deterministic_seed) Z_shape = [1] + list(D.shape)[1:] Z = torch.rand(Z_shape, device=D.device) # Sample Gumbel noise G = -torch.log(-torch.log(Z)) # Negate because are doing argmin instead of argmax D_key = -(logp_edge / self.random_temperature + G) return D_key def forward( self, X: torch.Tensor, C: torch.LongTensor, custom_D: Optional[torch.Tensor] = None, custom_mask_2D: Optional[torch.Tensor] = None, ) -> Tuple[torch.LongTensor, torch.Tensor]: D, mask_1D, mask_2D = self._mask_distances(X, C, custom_D, custom_mask_2D) if self.criterion != "knn": if self.random_min_local > 0: # Build first k-NN graph (local) self.knn.k_neighbors = self.random_min_local edge_idx_local, _, mask_ij_local = self.knn(D, mask_1D, mask_2D) # Build mask exluding these first ones mask_ij_remaining = 1.0 - mask_ij_local mask_2D_remaining = torch.ones_like(mask_2D).scatter( 2, edge_idx_local, mask_ij_remaining ) mask_2D = mask_2D * mask_2D_remaining # Build second k-NN graph (random) self.knn.k_neighbors = self.num_neighbors - self.random_min_local D = self._perturb_distances(D) edge_idx_random, _, mask_ij_random = self.knn(D, mask_1D, mask_2D) edge_idx = torch.cat([edge_idx_local, edge_idx_random], 2) mask_ij = torch.cat([mask_ij_local, mask_ij_random], 2) # Handle small proteins k = min(self.num_neighbors, D.shape[-1]) edge_idx = edge_idx[:, :, :k] mask_ij = mask_ij[:, :, :k] self.knn.k_neighbors = self.num_neighbors return edge_idx.contiguous(), mask_ij.contiguous() else: D = self._perturb_distances(D) edge_idx, edge_D, mask_ij = self.knn(D, mask_1D, mask_2D) return edge_idx, mask_ij class kNN(nn.Module): """Build a k-nearest neighbors graph given a dissimilarity matrix. Args: k_neighbors (int): Number of nearest neighbors to include as edges of each node in the graph. Inputs: D (torch.Tensor): Dissimilarity matrix with shape `(num_batch, num_nodes, num_nodes)`. mask (torch.Tensor, optional): Node mask with shape `(num_batch, num_nodes)`. mask_2D (torch.Tensor, optional): Edge mask with shape `(num_batch, num_nodes, num_nodes)`. Outputs: edge_idx (torch.LongTensor): Edge indices with shape `(num_batch, num_nodes, k)`. The slice `edge_idx[b,i,:]` contains the indices `{j in N(i)}` of the k nearest neighbors of node `i` in object `b`. edge_D (torch.Tensor): Distances to each neighbor with shape `(num_batch, num_nodes, k)`. mask_ij (torch.Tensor): Edge mask with shape `(num_batch, num_nodes, num_neighbors)`. """ def __init__(self, k_neighbors: int): super(kNN, self).__init__() self.k_neighbors = k_neighbors def forward( self, D: torch.Tensor, mask: Optional[torch.Tensor] = None, mask_2D: Optional[torch.Tensor] = None, ) -> Tuple[torch.LongTensor, torch.Tensor, torch.Tensor]: mask_full = None if mask is not None: mask_full = mask.unsqueeze(2) * mask.unsqueeze(1) if mask_2D is not None: mask_full = mask_2D if mask_full is None else mask_full * mask_2D if mask_full is not None: max_float = np.finfo(np.float32).max D = mask_full * D + (1.0 - mask_full) * max_float k = min(self.k_neighbors, D.shape[-1]) edge_D, edge_idx = torch.topk(D, int(k), dim=-1, largest=False) mask_ij = None if mask_full is not None: mask_ij = graph.collect_edges(mask_full.unsqueeze(-1), edge_idx) mask_ij = mask_ij.squeeze(-1) return edge_idx, edge_D, mask_ij class NodeInternalCoords(nn.Module): """Node features representing internal coordinates. Args: include_ideality (Boolean): Whether or not to include ideality features along with direct geometry. Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: node_h (torch.Tensor): Edge distance matrix features with shape `(num_batch, num_residues, 20)` """ def __init__( self, include_ideality: bool = False, distance_eps: float = 0.01, log_lengths: bool = False, ): super(NodeInternalCoords, self).__init__() self.internal_coords = geometry.InternalCoords() self.distance_eps = distance_eps self.include_ideality = include_ideality self.dim_out = 28 if self.include_ideality else 20 self.log_lengths = log_lengths # Engh and Huber Ideal Geometry ideal_lengths = [1.459, 1.525, 1.336, 1.229] ideal_angles = [111.0, 117.2, 121.7, 120.0] # Angles are output as complement in radians ideal_angles = [np.pi - degrees * np.pi / 180.0 for degrees in ideal_angles] if self.include_ideality: ideal_lengths = torch.as_tensor(ideal_lengths).view([1, 1, -1]) self.register_buffer("ideal_lengths", ideal_lengths) ideal_angles = torch.as_tensor(ideal_angles).view([1, 1, -1]) self.register_buffer("ideal_angles", ideal_angles) def forward( self, X: torch.Tensor, edge_idx: Optional[torch.LongTensor] = None, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: outs = self.internal_coords(X, C=C, return_masks=True) dihedrals, angles, lengths = outs[:3] mask_dihedrals, mask_angles, mask_lengths = outs[3:] angle_stack = torch.cat([dihedrals, angles], dim=-1) mask = chain_map_to_mask(C).unsqueeze(-1) if self.log_lengths: lengths = torch.log(lengths + self.distance_eps) feature_list = [torch.cos(angle_stack), torch.sin(angle_stack), lengths] # Ideality scores if self.include_ideality: # Mask angle features mask_stack = torch.cat([mask_dihedrals, mask_angles], dim=-1) feature_list[0] = mask_stack * feature_list[0] feature_list[1] = mask_stack * feature_list[1] _D_fun = lambda D: torch.log(D + self.distance_eps) length_scores = (_D_fun(lengths) - _D_fun(self.ideal_lengths)) ** 2 angle_scores = torch.cos(angles - self.ideal_angles) length_scores = mask_lengths * length_scores angle_scores = mask_angles * angle_scores feature_list = feature_list + [length_scores, angle_scores] node_h = mask * torch.cat(feature_list, dim=-1) return node_h class NodeRadii(nn.Module): """Node features representing radii in the larger complex. Args: length_scale (float): Typical length scale for normalizing distances. Attributes: dim_out (int): Number of dimensions of the output features. (4) Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: node_h (torch.Tensor): Node radii features with shape `(num_batch, num_residues, 4)` """ def __init__(self, length_scale: float = 100.0): super(NodeRadii, self).__init__() self.dim_out = 4 self.length_scale = length_scale def forward( self, X: torch.Tensor, edge_idx: Optional[torch.LongTensor] = None, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: num_batch, num_residues = list(C.shape) mask_i = (C > 0).float() mask_i = mask_i.reshape([num_batch, num_residues, 1, 1]).expand(X.shape) X_center = (mask_i * X).sum([1, 2], keepdim=True) / mask_i.sum( [1, 2], keepdim=True ) node_h = (mask_i * ((X - X_center) / self.length_scale) ** 2).sum(-1) return node_h class Edge6mers(nn.Module): """Build concatenation of 3mer coordinates on graph edges. This layer assembles the pairwise concatenations of the coordinates `{X_a for a in {i-1,i,i+1,j-1,j,j+1}}` along every edge in a graph. This can be used for stitching of '6mer PairTERMs'. Args: require_contiguous (boolean, optional): Whether to enforce that `{i-1,i,i+1}` and`{j-1,j,j+1}` are each made up of contiguous residues from the same protein chain. Default is `True`. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. mask (Tensor, optional): Mask tensor with shape `(num_batch, num_residues)`. Outputs: X_ij (torch.Tensor): Pairwise-concatenated 3mers with shape `(num_batch, num_residues, num_neighbors, 2*num_atom_types, 3)`. mask_ij (Tensor, if mask): Propagated mask tensor for edges with shape `(num_batch, num_residues, num_neighbors)`. """ def __init__(self, require_contiguous: bool = True): super(Edge6mers, self).__init__() self.require_contiguous = require_contiguous def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: def _pair_expand(h, collate_fun): # Build local neighborhoods [i-1, i, i+1] h_left = F.pad(h[:, :-1, :], (0, 0, 1, 0), "constant", 0) h_middle = h[:, :, :] h_right = F.pad(h[:, 1:, :], (0, 0, 0, 1), "constant", 0) h_i = collate_fun((h_left, h_middle, h_right)) # Concatenate [j-1, j, j+1] of neighbors h_j = graph.collect_neighbors(h_i, edge_idx) h_i_tile = h_i.unsqueeze(-2).expand(h_j.size()) h_ij = collate_fun((h_i_tile, h_j)) return h_ij # Concatenation collation function for stitching _cat = lambda hs: torch.cat(hs, dim=-1) # Cumulative product collation function for mask propagation def _mul(hs): result = hs[0] for h_i in hs[1:]: result = result * h_i return result # Element-wise enforce values are greater than 0 and equal def _nonzero_and_equal(hs): entry_0 = hs[0] result = (hs[0] > 0.0).type(torch.float32) for h_i in hs[1:]: result = result * (entry_0 == h_i).type(torch.float32) return result # Build local neighborhoods [i-1, i, i+1] # X [batch, position, atom, xyz] X_flat = X.reshape(X.size(0), X.size(1), -1) X_ij = _pair_expand(X_flat, collate_fun=_cat) X_ij = X_ij.view(list(X_ij.size())[:-1] + [-1, 3]) if C is not None: if self.require_contiguous: mask_ij = _pair_expand(C.unsqueeze(-1), collate_fun=_nonzero_and_equal) else: mask = chain_map_to_mask(C) mask_ij = _pair_expand(mask.unsqueeze(-1), collate_fun=_mul) return X_ij, mask_ij else: return X_ij class Edge2mers(nn.Module): """Build concatenation of 1mer coordinates on graph edges. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: X_ij (torch.Tensor): Pairwise-concatenated 3mers with shape `(num_batch, num_residues, num_neighbors, 2*num_atom_types, 3)`. mask_ij (Tensor, if mask): Propagated mask tensor for edges with shape `(num_batch, num_residues, num_neighbors)`. """ def __init__(self): super(Edge2mers, self).__init__() def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: num_batch = edge_idx.shape[0] num_residues = edge_idx.shape[1] num_neighbors = edge_idx.shape[2] num_atom_types = X.shape[2] shape_X = [num_batch, num_residues, num_neighbors, num_atom_types * 3] X_flat = X.reshape(num_batch, num_residues, -1) X_i = X_flat.unsqueeze(2).expand(shape_X) X_j = graph.collect_neighbors(X_flat, edge_idx).expand(shape_X) X_ij = torch.cat([X_i, X_j], -1) X_ij = X_ij.reshape( num_batch, num_residues, num_neighbors, 2 * num_atom_types, 3 ) if C is not None: mask_i = chain_map_to_mask(C).unsqueeze(-1) mask_j = graph.collect_neighbors(mask_i, edge_idx) mask_ij = mask_i.unsqueeze(2) * mask_j return X_ij, mask_ij else: return X_ij class EdgeDistance6mer(nn.Module): """Edge features based on chain distance matrices along each i,j 6mer. Args: feature (str, optional): Option string in {'log', 'inverse', 'raw'} specifying how to process the raw distance features. Defaults to 'log'. distance_eps (float, optional): Smoothing parameter to prevent feature explosion at small distances. Can be thought of as a 'minimum length scale'. Defaults to 0.01. require_contiguous (boolean, optional): Whether to enforce that each 3mer, `{i-1,i,i+1}` and`{j-1,j,j+1}`, is made up of contiguous residues from the same protein chain. Default is `False` for backwards compatibility, but `True` is recommended as best practice. Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: edge_h (torch.Tensor): Edge distance matrix features with shape `(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)` """ def __init__( self, feature: str = "log", distance_eps: float = 0.01, num_atom_types: int = 4, require_contiguous: bool = False, ): super(EdgeDistance6mer, self).__init__() self.feature = feature self.distance_eps = distance_eps self.num_atom_types = num_atom_types self.layer_6mers = Edge6mers(require_contiguous=require_contiguous) self.layer_distance = geometry.Distances() # Public attribute self.dim_out = (6 * num_atom_types) ** 2 self.feature = feature feature_functions = { "log": self.log_func, "inverse": self.inverse_func, "raw": self.raw_func, } self.feature_function = feature_functions[feature] def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: X_ij, mask_ij = self.layer_6mers(X, edge_idx, C=C) D_ij = self.layer_distance(X_ij, dim=-2) feature_ij = self.feature_function(D_ij) feature_ij_flat = feature_ij.reshape(list(D_ij.shape[:3]) + [-1]) edge_h = mask_ij * feature_ij_flat # debug_plot_edge6merdist(edge_h, feature=self.feature) return edge_h def log_func(self, D): return torch.log(D + self.distance_eps) def inverse_func(self, D): return 1.0 / (D + self.distance_eps) def raw_func(self, D): return D class EdgeDistance2mer(nn.Module): """Edge features based on chain distance matrices along each i,j 2mer. Args: feature (str, optional): Option string in {'log', 'inverse', 'raw'} specifying how to process the raw distance features. Defaults to 'log'. distance_eps (float, optional): Smoothing parameter to prevent feature explosion at small distances. Can be thought of as a 'minimum length scale'. Defaults to 0.01. Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: edge_h (torch.Tensor): Edge distance matrix features with shape `(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)` """ def __init__( self, features: str = "rbf+log", distance_eps: float = 0.01, num_atom_types: int = 4, rbf_min: float = 0.0, rbf_max: float = 20.0, rbf_count: int = 20, ): super(EdgeDistance2mer, self).__init__() self.distance_eps = distance_eps self.num_atom_types = num_atom_types self.layer_2mers = Edge2mers() self.layer_distance = geometry.Distances() features = features.split("+") if not isinstance(features, list): features = [features] self.features = features if "rbf" in self.features: self.rbf_function = RBFExpansion(rbf_min, rbf_max, rbf_count) dim_base = (2 * num_atom_types) ** 2 feature_dims = { "log": dim_base, "inverse": dim_base, "raw": dim_base, "rbf": dim_base * rbf_count, } # Public attribute self.dim_out = sum([feature_dims[d] for d in features]) self.feature_funcs = { "log": lambda D: torch.log(D + self.distance_eps), "inverse": lambda D: 1.0 / (D + self.distance_eps), "raw": lambda D: D, "rbf": lambda D: self.rbf_function(D), } def featurize(self, D): h_list = [] for feature in self.features: h = self.feature_funcs[feature](D) h_list.append(h) h = torch.cat(h_list, -1) return h def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C) D_ij = self.layer_distance(X_ij, dim=-2) shape_flat = list(D_ij.shape[:3]) + [-1] D_ij = D_ij.reshape(shape_flat) feature_ij = self.featurize(D_ij) # DEBGUG # _debug_plot_edges(edge_idx, feature_ij, unravel=True) # exit(0) edge_h = mask_ij * feature_ij return edge_h class EdgeOrientation2mer(nn.Module): """Edge features based on chain distance matrices along each i,j 2mer. Args: feature (str, optional): Option string in {'log', 'inverse', 'raw'} specifying how to process the raw distance features. Defaults to 'log'. distance_eps (float, optional): Smoothing parameter to prevent feature explosion at small distances. Can be thought of as a 'minimum length scale'. Defaults to 0.01. Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: edge_h (torch.Tensor): Edge distance matrix features with shape `(num_batch, num_residues, num_neighbors, (6 * num_atom_types)**2)` """ def __init__(self, distance_eps: float = 0.1, num_atom_types: int = 4): super(EdgeOrientation2mer, self).__init__() self.distance_eps = distance_eps self.num_atom_types = num_atom_types self.layer_2mers = Edge2mers() # Public attribute self.dim_out = 3 * (2 * num_atom_types) ** 2 def _normed_vec(self, V): # Unit vector from i to j mag_sq = (V**2).sum(dim=-1, keepdim=True) mag = torch.sqrt(mag_sq + self.distance_eps) V_norm = V / mag return V_norm def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C) # Build direction vectors U_ij = self._normed_vec(X_ij.unsqueeze(3) - X_ij.unsqueeze(4)) # Build reference frame X_N, X_CA, X_C, X_O = X.unbind(2) _normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1)) u_CA_N = self._normed_vec(X_N - X_CA) u_CA_C = self._normed_vec(X_C - X_CA) n_1 = u_CA_N n_2 = _normed_cross(n_1, u_CA_C) n_3 = _normed_cross(n_1, n_2) R = torch.stack([n_1, n_2, n_3], -1) U_ij = torch.einsum("nijabx,nixy->nijaby", U_ij, R) # DEBUG: # _debug_plot_edges(edge_idx, U_ij[:,:,:,1,5,:]) feature_ij = U_ij.view(list(edge_idx.shape)[:3] + [-1]) edge_h = mask_ij * feature_ij return edge_h class EdgeOrientationChain(nn.Module): """Edge features encoding the relative orientations of chains and chain atoms. Args: feature (str, optional): Option string in {'log', 'inverse', 'raw'} specifying how to process the raw distance features. Defaults to 'log'. distance_eps (float, optional): Smoothing parameter to prevent feature explosion at small distances. Can be thought of as a 'minimum length scale'. Defaults to 0.1. distance_eps (float, optional): Like `distance_eps`, but for orientation calculations. Can be thought of as a 'minimum length scale' Defaults to 1E-5. Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: edge_h (torch.Tensor): Edge distance matrix features with shape `(num_batch, num_residues, num_neighbors, 24)` """ def __init__( self, feature: str = "log", distance_eps: float = 0.1, norm_eps: float = 1e-1 ): super(EdgeOrientationChain, self).__init__() self.distance_eps = distance_eps self.norm_eps = norm_eps self.feature = feature feature_functions = { "log": lambda D: torch.log(D + self.distance_eps), "inverse": lambda D: 1.0 / (D + self.distance_eps), "raw": lambda D: D, } self.feature_function = feature_functions[feature] # Public attribute self.dim_out = 24 def _normed_vec(self, V): # Unit vector from i to j mag_sq = (V**2).sum(dim=-1, keepdim=True) mag = torch.sqrt(mag_sq + self.norm_eps) V_norm = V / mag return V_norm def _reference_frames(self, X): # Build reference frames at each i X_N, X_CA, X_C, X_O = X.unbind(2) _normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1)) u_CA_N = self._normed_vec(X_N - X_CA) u_CA_C = self._normed_vec(X_C - X_CA) n_1 = u_CA_N n_2 = _normed_cross(n_1, u_CA_C) n_3 = _normed_cross(n_1, n_2) R = torch.stack([n_1, n_2, n_3], -1) return R def _reference_frames_chain(self, X, C): # Build reference frames at each i X_N, X_CA, X_C, X_O = X.unbind(2) _normed_cross = lambda U_a, U_b: self._normed_vec(torch.cross(U_a, U_b, dim=-1)) u_CA_N = self._normed_vec(X_N - X_CA) u_CA_C = self._normed_vec(X_C - X_CA) u_CA_N_avg = self._chain_average(u_CA_N, C) u_CA_C_avg = self._chain_average(u_CA_C, C) n_1 = self._normed_vec(u_CA_N_avg) n_2 = _normed_cross(n_1, self._normed_vec(u_CA_C_avg)) n_3 = _normed_cross(n_1, n_2) R = torch.stack([n_1, n_2, n_3], -1) return R def _chain_average(self, node_h, C, eps=1e-5): # Compute the per-chain averages of each feature within a chain, in place num_batch, num_residues = list(C.shape) num_chains = int(torch.max(C).item()) # Build a position == chain expanded mask (B,L,C) C_expand = C.unsqueeze(-1).expand(-1, -1, num_chains) idx = torch.arange(num_chains, device=C.device) + 1 idx_expand = idx.view(1, 1, -1) mask_expand = (idx_expand == C_expand).type(torch.float32) mask_expand = mask_expand.unsqueeze(-1) # Masked reduction node_h_expand = node_h.unsqueeze(2).expand(-1, -1, num_chains, -1) node_h_chain_average = (mask_expand * node_h_expand).sum(1, keepdim=True) / ( (mask_expand).sum(1, keepdim=True) + eps ) # Back-expand (B,C,K) => (B,L,3) node_h_chain_average = (mask_expand * node_h_chain_average).sum(2) return node_h_chain_average def _R_neighbors(self, R_i, edge_idx): num_batch, num_residues, num_k = list(edge_idx.shape) R_flat_i = R_i.reshape(num_batch, num_residues, 9) R_flat_j = graph.collect_neighbors(R_flat_i, edge_idx) R_j = R_flat_j.reshape(num_batch, num_residues, num_k, 3, 3) return R_j def _transformation_features(self, X_i, X_j, R_i, R_j, edge_idx, edges=True): # Distance and direction dX = X_j - X_i.unsqueeze(2).contiguous() L = torch.sqrt((dX**2).sum(-1, keepdim=True) + self.distance_eps) u_ij = torch.einsum("niab,nija->nijb", R_i, dX / L) # Relative orientation R_relative_ij = torch.einsum("niab,nijac->nijbc", R_i, R_j) q_ij = geometry.quaternions_from_rotations(R_relative_ij) h = torch.cat((self.feature_function(L), u_ij, q_ij), dim=-1) return h def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: num_batch, num_residues, num_k = list(edge_idx.shape) # Compute local positions (C-alpha) and frames (B, L, 4) R_i = self._reference_frames(X) R_chain_i = self._reference_frames_chain(X, C) # X chain X_i = X[:, :, 1, :] X_j = graph.collect_neighbors(X_i, edge_idx) X_chain_i = self._chain_average(X_i, C) X_chain_j = graph.collect_neighbors(X_chain_i, edge_idx) # Relative chain features R_chain_j = self._R_neighbors(R_chain_i, edge_idx) R_j = self._R_neighbors(R_i, edge_idx) h_chain_to_chain = self._transformation_features( X_chain_i, X_chain_j, R_chain_i, R_chain_j, edge_idx ) h_chain_to_node = self._transformation_features( X_chain_i, X_j, R_chain_i, R_j, edge_idx ) h_node_to_node = self._transformation_features(X_i, X_j, R_i, R_j, edge_idx) edge_h = torch.cat((h_chain_to_chain, h_chain_to_node, h_node_to_node), -1) # DEBUG: # h = h_node_to_node # _debug_plot_edges(edge_idx, h[:,:,:,0].unsqueeze(-1)) # _debug_plot_edges(edge_idx, h[:,:,:,1:4]) # _debug_plot_edges(edge_idx, h[:,:,:,5:9]) mask_i = chain_map_to_mask(C).unsqueeze(-1) mask_j = graph.collect_neighbors(mask_i, edge_idx) mask_ij = mask_i.unsqueeze(2) * mask_j edge_h = mask_ij * edge_h return edge_h class EdgeDistanceChain(nn.Module): """Edge features based on distance matrices along each i,j 6mer. These feature capture (signed) intra-chain distances as well as distinguish between same vs. different chain. Args: Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: edge_h (torch.Tensor): Edge chain distance features with shape `(num_batch, num_residues, num_neighbors, 2)` """ def __init__(self): super(EdgeDistanceChain, self).__init__() # Public attribute self.dim_out = 3 def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: # Is the edge intra-chain or inter-chain? chain_i = C.unsqueeze(-1) chain_j = graph.collect_neighbors(chain_i, edge_idx).squeeze(-1) is_interface = torch.ne(chain_i, chain_j).type(torch.float32) # If it is intra-chain, what is the chain distance? residue_i = torch.arange(edge_idx.shape[1], device=X.device).view((1, -1, 1)) residue_j = edge_idx D_signed = (residue_j - residue_i).type(torch.float32) D_residue = torch.abs(D_signed) D_intra = (1.0 - is_interface) * torch.log(D_residue + 1.0) D_intra_sign = (1.0 - is_interface) * torch.sign(D_signed) edge_h = torch.stack([is_interface, D_intra, D_intra_sign], dim=-1) return edge_h class EdgePositionalEncodings(nn.Module): """Edge features based on positional encodings of chain distance |i-j|. Args: dim_embeddings (int): Embedding dimension. Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: edge_h (torch.Tensor): Edge chain distance features with shape `(num_batch, num_residues, num_neighbors, 2)` """ def __init__(self, dim_embedding: int = 128, period_range: tuple = (1.0, 1000.0)): super(EdgePositionalEncodings, self).__init__() # Public attribute self.dim_out = dim_embedding self.encoding = PositionalEncoding( d_model=dim_embedding, period_range=period_range ) def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: # Is the edge intra-chain or inter-chain? chain_i = C.unsqueeze(-1) chain_j = graph.collect_neighbors(chain_i, edge_idx).squeeze(-1) mask_intrachain = torch.eq(chain_i, chain_j).float() # If it is intra-chain, what is the chain distance? residue_i = torch.arange(edge_idx.shape[1], device=X.device).view((1, -1, 1)) residue_j = edge_idx D_signed = (residue_j - residue_i).float() edge_h = mask_intrachain[..., None] * self.encoding(D_signed[..., None]) return edge_h class EdgeRandomFourierFeatures2mer(nn.Module): """For edge-ij computes a random fourier projection of the SE3-invariant feature t_ji pointing from i to j in the local frame of residue i, optionally including the projection of the associated quaternion representation of R_ji the rotation from taking you from frame i to frame j Features are decayed exponentially at rate alpha. Args: dim_embedding (int): dimension of embedding trainable (bool): Whether to train the weight matrix of the fourier features scale (float): The scale (standard deviation) to sample random weights from use_quaternion (bool): Whether to embed the quaternion representation as well Inputs: X (torch.tensor): of size (batch, length, (4 or 14), 3) edge_idx (torch.LongTensor): of size (batch, length, num_neighbors) C (torch.tensor): of size (batch, length) Outputs: edge_h (torch.tensor): of size (batch, length, num_neighbors, dim_embedding) """ def __init__( self, dim_embedding: int = 128, trainable: bool = False, scale: float = 1.0, use_quaternion: bool = False, seed: int = 10, ): super().__init__() self._seed = seed with torch.random.fork_rng(): torch.random.manual_seed(self._seed) self.vector_f = FourierFeaturization( 3, dim_embedding, trainable=trainable, scale=scale ) self.distance_f = FourierFeaturization( 64, dim_embedding, trainable=trainable, scale=scale ) self.use_quaternion = use_quaternion if self.use_quaternion: self.quat_f = FourierFeaturization( 4, dim_embedding, trainable=trainable, scale=scale ) self.layer_2mers = Edge2mers() self.layer_distance = geometry.Distances() self.frame_builder = backbone.FrameBuilder() self.dim_out = dim_embedding def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: X_ij, mask_ij = self.layer_2mers(X, edge_idx, C=C) D_ij = self.layer_distance(X_ij, dim=-2) D_ij = D_ij.reshape(*D_ij.size()[:-2], -1) R_i, t_i, _ = self.frame_builder.inverse(X, C) R_j, t_j = transforms.collect_neighbor_transforms(R_i, t_i, edge_idx) R_ji, t_ji = transforms.compose_inner_transforms( R_j, t_j, R_i.unsqueeze(-3), t_i.unsqueeze(-2) ) edge_h = self.vector_f(t_ji) + self.distance_f(D_ij) if self.use_quaternion: Q_ji = geometry.quaternions_from_rotations(R_ji) edge_h = edge_h + self.quat_f(Q_ji) return edge_h class RBFExpansion(nn.Module): def __init__( self, value_min: float, value_max: float, num_rbf: int, std: Optional[float] = None, ): super(RBFExpansion, self).__init__() rbf_centers = torch.linspace(value_min, value_max, num_rbf) self.register_buffer("rbf_centers", rbf_centers) if std is None: std = (rbf_centers[1] - rbf_centers[0]).item() self.std = std def forward(self, h: torch.Tensor) -> torch.Tensor: shape = list(h.shape) shape_ones = [1 for _ in range(len(shape))] + [-1] rbf_centers = self.rbf_centers.view(shape_ones) h = torch.exp(-(((h.unsqueeze(-1) - rbf_centers) / self.std) ** 2)) h = h.view(shape[:-1] + [-1]) return h class NodeCartesianCoords(nn.Module): """Node features containing raw relative coordinates. Warning: these features are not rotationally invariant. Args: scale_factor (float, optional): Scale factor to rescale raw coordinates for neural network processing. Default is 0.3. num_atom_types (int, optional): Number of atom types. Default is 4. Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: edge_h (torch.Tensor): Node relative coordinates features with shape `(num_batch, num_residues, 3 * (num_atom_types)**2)` """ def __init__(self, scale_factor: float = 0.3, num_atom_types: int = 4): super(NodeCartesianCoords, self).__init__() self.scale_factor = scale_factor self.num_atom_types = num_atom_types # Public attribute self.dim_out = 3 * (num_atom_types**2) def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: num_batch, num_residues, num_neighbors = list(edge_idx.shape) dX = X.unsqueeze(-2) - X.unsqueeze(-3) node_h = self.scale_factor * dX.reshape([num_batch, num_residues, -1]) if C is not None: mask_i = chain_map_to_mask(C) node_h = mask_i.unsqueeze(-1) * node_h return node_h class EdgeCartesianCoords(nn.Module): """Edge features containing raw relative coordinates. Warning: these features are not rotationally invariant. Args: scale_factor (float, optional): Scale factor to rescale raw coordinates for neural network processing. Default is 0.1. num_atom_types (int, optional): Number of atom types. Default is 4. Attributes: dim_out (int): Number of dimensions of the output features. Inputs: X (torch.Tensor): Backbone coordinates with shape `(num_batch, num_residues, num_atom_types, 3)`. edge_idx (torch.LongTensor): Graph indices for expansion with shape `(num_batch, num_residues, num_neighbors)`. C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Outputs: edge_h (torch.Tensor): Edge relative coordinates features with shape `(num_batch, num_residues, num_neighbors, 3 * (num_atom_types)**2)` """ def __init__(self, scale_factor: float = 0.1, num_atom_types: int = 4): super(EdgeCartesianCoords, self).__init__() self.scale_factor = scale_factor self.num_atom_types = num_atom_types # Public attribute self.dim_out = 3 * (num_atom_types**2) def forward( self, X: torch.Tensor, edge_idx: torch.LongTensor, C: Optional[torch.LongTensor] = None, ) -> torch.Tensor: num_batch, num_residues, num_neighbors = list(edge_idx.shape) # Collect coordiates and j X_flat = X.reshape([num_batch, num_residues, -1]) X_j_flat = graph.collect_neighbors(X_flat, edge_idx) X_j = X_j_flat.reshape( [num_batch, num_residues, num_neighbors, 1, self.num_atom_types, 3] ) X_i = X.reshape([num_batch, num_residues, 1, self.num_atom_types, 1, 3]) dX = X_j - X_i edge_h = self.scale_factor * dX.reshape( [num_batch, num_residues, num_neighbors, -1] ) if C is not None: mask_i = chain_map_to_mask(C) mask_i_expand = mask_i.unsqueeze(-1) mask_j = graph.collect_neighbors(mask_i_expand, edge_idx) mask_ij = mask_j * mask_i_expand.unsqueeze(-1) edge_h = mask_ij * edge_h return edge_h def chain_map_to_mask(C: torch.LongTensor) -> torch.Tensor: """Convert chain map into a mask. Args: C (torch.LongTensor): Chain map with shape `(num_batch, num_residues)`. Returns: mask (Tensor, optional): Mask tensor with shape `(num_batch, num_residues)`. """ return (C > 0).type(torch.float32) def _cgo_cylinder(X1, X2, radius=0.5, rgb=(0.0, 0.0, 1.0)): x1, y1, z1 = X1.data.numpy().flatten().tolist() x2, y2, z2 = X2.data.numpy().flatten().tolist() r1, g1, b1 = rgb r2, g2, b2 = rgb cgo_str = ( f"[ 9.0, {x1}, {y1}, {z1}, {x2}, {y2}, {z2}, {radius}, {r1}, {g1}, {b1}, {r2}," f" {g2}, {b2} ]" ) return cgo_str def _cgo_sphere(X1, radius=1.0): x1, y1, z1 = X1.data.numpy().flatten().tolist() cgo_str = f"[ 7.0, {x1}, {y1}, {z1}, {radius}]" return cgo_str def _cgo_color(rgb=(0.0, 0.0, 1.0)): r, g, b = rgb cgo_str = f"[ 6.0, {r}, {g}, {b}]" return cgo_str if __name__ == "__main__": _debug_plot_random_graphs(num_neighbors=60)