{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import streamlit as st" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def main():\n", " st.title(\"科研代码分析应用\")\n", " uploaded_file = st.file_uploader(\"\", type=[\"py\"])\n", "\n", " if uploaded_file is not None:\n", " # 读取代码文件内容\n", " code_content = uploaded_file.read()\n", "\n", " # 在这里添加你的代码分析功能,例如解析、可视化等\n", "\n", " # 显示代码内容\n", " st.code(code_content, language=\"python\")\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-02-19 09:17:25.437 \n", " \u001b[33m\u001b[1mWarning:\u001b[0m to view this Streamlit app on a browser, run it with the following\n", " command:\n", "\n", " streamlit run /data/home/wudezhi/anaconda3/envs/mlfold/lib/python3.8/site-packages/ipykernel_launcher.py [ARGUMENTS]\n" ] } ], "source": [ "if __name__ == \"__main__\":\n", " main()" ] } ], "metadata": { "kernelspec": { "display_name": "mlfold", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.18" } }, "nbformat": 4, "nbformat_minor": 2 }