Spaces:
Sleeping
Sleeping
File size: 9,477 Bytes
346f4c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import poker_functions as p
from fractions import Fraction
from collections import Counter
class Player:
def __init__(self, number, cards=[]):
if len(cards) > 0:
cards = p.make_card(cards)
else:
cards = []
self.number = number
self.cards = cards
self.hand = None
self.starting_cards = None
self.wins = 0
def __str__(self):
return "player_" + str(self.number)
def dedup(board):
duplicate = False
c = Counter(board)
for card in board:
if c[card] > 1:
duplicate = True
return duplicate
return duplicate
def validate_card(check):
"""Detect invalid cards in a passed collection"""
valid = True
deck = p.generate_deck()
valid_cards = [card.name for card in deck]
for card in check:
if card not in valid_cards:
valid = False
return valid
return valid
def convert_and_update(deck, cards):
if len(cards) == 0:
return deck, cards
else:
cards = p.make_card(cards)
for card in cards:
deck.update_deck(card)
return deck, cards
##### SIMULATIONS #####
def evaluate_hand(hole_cards, flop=[], turn=[], river=[]):
board = flop + turn + river
hand = None
if len(hole_cards + board) < 5:
return hand
else:
for func in p.HAND_REGISTRY:
func = func(hole_cards, board)
if not func:
continue
else:
return func
def score_game(contestants):
# TODO make this more elegant by functionizing repeated code.
"""Application will determine the highest hand, including low and kicker for each player in player_list"""
high = ['flush', 'straight', 'straight_flush']
kick = ['4ok']
hi_lo = ['boat']
hi_lo_kick = ['2pair', 'hc', '3ok', 'pair']
high_hand = max(contestants, key=lambda x: x.hand.hand_value) # contestant with highest hand
same_high_hand = [player for player in contestants if player.hand.hand_value == high_hand.hand.hand_value]
if len(same_high_hand) == 1:
same_high_hand[0].wins += 1
return contestants
elif high_hand.hand.type in high:
high_card = max(same_high_hand, key=lambda x: x.hand.high_value)
same_high_card = [player for player in same_high_hand if player.hand.high_value == high_card.hand.high_value]
if len(same_high_card) == 1:
high_card.wins += 1
return contestants
else:
return contestants
elif high_hand.hand.type in hi_lo:
over = max(same_high_hand, key=lambda x: x.hand.high_value) # Highest pair in hand
same_over = [player for player in same_high_hand if player.hand.high_value == over.hand.high_value]
if len(same_over) == 1:
over.wins += 1
return contestants
else:
under = max(same_over, key=lambda x: x.hand.low_value) # lowest pair in hand
same_under = [player for player in same_over if player.hand.low_value == under.hand.low_value]
if len(same_under) == 1:
under.wins += 1
return contestants
else:
return contestants
elif high_hand.hand.type in hi_lo_kick:
over = max(same_high_hand, key=lambda x: x.hand.high_value) # Highest pair in hand
same_over = [player for player in same_high_hand if player.hand.high_value == over.hand.high_value]
if len(same_over) == 1:
over.wins += 1
return contestants
else:
under = max(same_over, key=lambda x: x.hand.low_value) # lowest pair in hand
same_under = [player for player in same_over if player.hand.low_value == under.hand.low_value]
if len(same_under) == 1:
under.wins += 1
return contestants
else:
kicker = max(same_under, key=lambda x: x.hand.kicker)
same_kicker = [player for player in same_under if player.hand.kicker == kicker.hand.kicker]
if len(same_kicker) == 1:
kicker.wins += 1
return contestants
else:
return contestants
elif high_hand.hand.type in kick:
low_val = max(same_high_hand, key=lambda x: x.hand.low_value)
same_low_val = [player for player in same_high_hand if player.hand.low_value == low_val.hand.low_value]
if len(same_low_val) == 1:
low_val.wins += 1
return contestants
else:
return contestants
def simulation_one_player(hole, flop=None, turn=None, river=None, sims=100000):
if flop is None:
flop = []
if turn is None:
turn = []
if river is None:
river = []
full_board = 7 # number of cards required to run sim
passed_cards = len(hole) + len(flop) + len(turn) + len(river)
passed_flop = list(flop)
high_cards = 0
pairs = 0
two_pairs = 0
trips = 0
straights = 0
flushes = 0
boats = 0
quads = 0
straight_flushes = 0
invalid = 0
for i in range(sims):
deck = p.generate_deck()
deck, hole = convert_and_update(deck, hole)
deck, flop = convert_and_update(deck, flop)
deck, turn = convert_and_update(deck, turn)
deck, river = convert_and_update(deck, river)
j = full_board - passed_cards
for _ in range(j):
deal, deck = deck.deal_card()
flop.append(deal) # Adding to flop because it shouldn't matter, will revert flop back at end of loop
hand = evaluate_hand(hole, flop, turn, river)
if hand.type == '2pair':
two_pairs += 1
elif hand.type == '3ok':
trips += 1
elif hand.type == '4ok':
quads += 1
elif hand.type == 'boat':
boats += 1
elif hand.type == 'flush':
flushes += 1
elif hand.type == 'hc':
high_cards += 1
elif hand.type == 'pair':
pairs += 1
elif hand.type == 'straight':
straights += 1
elif hand.type == 'straight_flush':
straight_flushes += 1
else:
invalid += 1
i += 1
flop = list(passed_flop)
return sims, high_cards, pairs, two_pairs, trips, straights, flushes, boats, quads, straight_flushes
def simulation_multiplayer(hole_one, hole_two=[], hole_three=[], hole_four=[], hole_five=[], hole_six=[],
flop = [], turn = [], river = [], opponents=2, sims=10000):
contestant_hands = [hole_one, hole_two, hole_three, hole_four, hole_five, hole_six]
contestants = []
flop = p.make_card(flop)
turn = p.make_card(turn)
river = p.make_card(river)
passed_flop_stable = [card for card in flop]
for n in range(opponents):
player_name = 'opponent' + str(n+1)
player_name = Player(n, contestant_hands[n])
contestants.append(player_name)
i = 0
passed_board = len(flop) + len(turn) + len(river)
full_board = 5
k = full_board - passed_board
for i in range(sims):
deck = p.generate_deck()
for contestant in contestants: # TODO move assigning Player.starting_cards to init
if len(contestant.cards) == 2:
contestant.starting_cards = True
for card in contestant.cards:
deck.update_deck(card) # remove known hole cards from deck
else:
contestant.starting_cards = False
hole_cards = []
for j in range(2):
deal, deck = deck.deal_card()
hole_cards.append(deal)
contestant.cards = hole_cards # assign new hole cards if not passed
for l in range(k): # complete the board as needed
deal, deck = deck.deal_card()
flop.append(deal)
for contestant in contestants:
hand = evaluate_hand(contestant.cards, flop, turn, river)
contestant.hand = hand
# Compare hand values in contestants
contestants = score_game(contestants)
i += 1
# Revert to starting state
flop = [card for card in passed_flop_stable]
for contestant in contestants:
if contestant.starting_cards is False:
contestant.cards = []
hole_cards = []
return contestants
# TODO for single and mult: find and return most likely hand. Return number of outs and odds.
##### MATH #####
def percent(hits, sims):
percent = round((hits / sims) * 100,0)
return percent
def ratio(hits, sims):
"""Return a ratio (e.g. 3:5) for two input numbers"""
percent = round((hits / sims),2)
fraction = str(Fraction(percent).limit_denominator())
fraction = fraction.replace('/', ':')
return fraction
##### REFERENCE #####
outs = {'1':('46:1','45:1',"22:1"),
'2':('22:1','22:1','11:1'),
'3':('15:1', '14:1', '7:1'),
'4':('11:1','10:1','5:1'),
'5':('8.5:1', '8:1','4:1'),
'6':('7:1','7:1','3:1'),
'7':('6:1','6:1','2.5:1'),
'8':('5:1','5:1','2.5:1'),
'9':('4:1','4:1','2:1'),
'10':('3.5:1','3.5:1','1.5:1'),
'11':('3.3:1','3.2:1','1.5:1'),
'12':('3:1','3:1','1.2:1'),
}
rank_value = p.rank_value |