Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Class names
|
6 |
+
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
7 |
+
'dog', 'frog', 'horse', 'ship', 'truck']
|
8 |
+
|
9 |
+
# Load trained model
|
10 |
+
model = load_model("ResNet50_cifar10_best_fr.h5")
|
11 |
+
|
12 |
+
# Define the preprocessing function
|
13 |
+
def preprocess_image(img):
|
14 |
+
img = tf.image.resize(img, (32, 32))
|
15 |
+
img = img / 255.0
|
16 |
+
img = tf.expand_dims(img, axis=0)
|
17 |
+
return img
|
18 |
+
|
19 |
+
|
20 |
+
# Define the postprocessing function
|
21 |
+
def process_prediction(prediction):
|
22 |
+
predicted_class_index = int(prediction.argmax())
|
23 |
+
predicted_class_name = class_names[predicted_class_index]
|
24 |
+
return predicted_class_name
|
25 |
+
|
26 |
+
|
27 |
+
# Define the prediction function
|
28 |
+
def predict_cifar10(img):
|
29 |
+
preprocessed_img = preprocess_image(img)
|
30 |
+
prediction = model.predict(preprocessed_img)
|
31 |
+
return process_prediction(prediction)
|
32 |
+
|
33 |
+
# Create Gradio interface
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=predict_cifar10,
|
36 |
+
inputs=[gr.Image(label="Input Image")],
|
37 |
+
outputs=[gr.Label(label="Predicted Class")],
|
38 |
+
title="CIFAR-10 Image Classifier",
|
39 |
+
description="Upload an image to classify it using a CIFAR-10 model."
|
40 |
+
)
|
41 |
+
|
42 |
+
# Launch the interface
|
43 |
+
iface.launch()
|