# main.py import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Load model and tokenizer model_name = "meta-llama/Llama-2-7b-chat-hf" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) chat_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) # Define the generate_response function def generate_response(prompt): response = chat_pipeline(prompt, max_length=50)[0]['generated_text'] return response # Create Gradio interface interface = gr.Interface( fn=generate_response, inputs="text", outputs="text", layout="vertical", title="LLAMA-2-7B Chatbot", description="Enter a prompt and get a chatbot response.", examples=[["Tell me a joke."]], ) if __name__ == "__main__": interface.launch()