Spaces:
Sleeping
Sleeping
File size: 3,903 Bytes
39ea97d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import os
import csv
import json
import streamlit as st
from PyPDF2 import PdfReader
from llm_config import instantiate_llm
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.output_parsers import PydanticOutputParser
from template import prompt_template
import pandas as pd
from candidate import Candidate
import logging
from rank import extract_and_rank
def extract_resume(resume):
reader = PdfReader(resume)
return "".join(page.extract_text() for page in reader.pages)
def main():
st.set_page_config(layout="wide", page_title="Hushh Jobs")
st.header("Hushh Jobs")
model, prompt = instantiate_llm()
col1, col2, col3 = st.columns(3)
with col1:
resumes = st.file_uploader(
"Upload resumes here!", accept_multiple_files=True, type="pdf"
)
with col2:
no_of_resumes = st.number_input("Enter the number of resumes you want to shortlist",step=1)
with col3:
job_description = st.text_area("Enter the job description here!", height=250)
rank_btn = st.button("Rank")
if resumes and rank_btn:
if len(job_description) < 1:
st.warning(
"Invalid or Empty job description! Please make sure your job description has atleast 25 characters!"
)
else:
dict_object = {}
rows = []
ranked_resumes, embeddings_bank, text_bank = extract_and_rank(
resumes, job_description
)
no_of_resumes=int(no_of_resumes)
for selected_resume in ranked_resumes[:no_of_resumes]:
resume_text = text_bank[selected_resume[0]]
doc_query = f"Return only a json based on this candidate's resume information: {resume_text}"
input = prompt.format_prompt(query=doc_query)
#using PydanticOutputParser for structuring language model responses into a coherent, JSON-like format.
parser = PydanticOutputParser(pydantic_object=Candidate)
with get_openai_callback() as cb:
try:
result = model(input.to_string())
st.success(result)
class_object= parser.parse(result) #using the above defined pydantic output parser to structure the response in a json-format
dict_object=class_object.__dict__
#dict_object = json.loads(result)
rows.append(dict_object)
except Exception as error:
print(error)
field_names = [
"name",
"email",
"phone",
"location",
"degree",
"college",
"skills",
"companies",
"roles",
"degree_year",
"experience",
]
user_csv = "shortlisted.csv"
write_csv(user_csv=user_csv, field_names=field_names, rows=rows)
df = pd.read_csv(user_csv)
st.dataframe(df)
#def write_csv(user_csv, field_names, rows):
def write_csv(user_csv, field_names, rows):
with open(user_csv, "w") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=field_names)
writer.writeheader()
for row in rows:
writer.writerow(row)
def write_response(user_csv, response: str):
"""
Write a response from an agent to a Streamlit app.
Args:
response_dict: The response from the agent.
Returns:
None.
"""
df = pd.read_csv(user_csv)
data = eval(response)
st.dataframe(data=data, use_container_width=True)
if __name__ == "__main__":
main()
|