File size: 3,903 Bytes
39ea97d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import csv
import json
import streamlit as st
from PyPDF2 import PdfReader
from llm_config import instantiate_llm
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.output_parsers import PydanticOutputParser
from template import prompt_template
import pandas as pd
from candidate import Candidate
import logging
from rank import extract_and_rank


def extract_resume(resume):
    reader = PdfReader(resume)
    return "".join(page.extract_text() for page in reader.pages)


def main():
    st.set_page_config(layout="wide", page_title="Hushh Jobs")
    st.header("Hushh Jobs")
    model, prompt = instantiate_llm()
    col1, col2, col3 = st.columns(3)

    with col1:
        resumes = st.file_uploader(
            "Upload resumes here!", accept_multiple_files=True, type="pdf"
        )


    with col2:
        no_of_resumes = st.number_input("Enter the number of resumes you want to shortlist",step=1)

    with col3:
        job_description = st.text_area("Enter the job description here!", height=250)
        rank_btn = st.button("Rank")
    
    

    if resumes and rank_btn:

        if len(job_description) < 1:
            st.warning(
                "Invalid or Empty job description! Please make sure your job description has atleast 25 characters!"
            )

        else:
            dict_object = {}
            rows = []
            ranked_resumes, embeddings_bank, text_bank = extract_and_rank(
                resumes, job_description
            )

            no_of_resumes=int(no_of_resumes)
            for selected_resume in ranked_resumes[:no_of_resumes]:
                resume_text = text_bank[selected_resume[0]]

                doc_query = f"Return only a json based on this candidate's resume information: {resume_text}"
                input = prompt.format_prompt(query=doc_query)

                #using PydanticOutputParser for structuring language model responses into a coherent, JSON-like format.
                parser = PydanticOutputParser(pydantic_object=Candidate)

                with get_openai_callback() as cb:
                    try:
                        result = model(input.to_string())
                        st.success(result)
                        class_object= parser.parse(result)  #using the above defined pydantic output parser to structure the response in a json-format
                        dict_object=class_object.__dict__
                        #dict_object = json.loads(result)
                        rows.append(dict_object)
                    except Exception as error:
                        print(error)
            field_names = [
                "name",
                "email",
                "phone",
                "location",
                "degree",
                "college",
                "skills",
                "companies",
                "roles",
                "degree_year",
                "experience",
            ]
            user_csv = "shortlisted.csv"
            write_csv(user_csv=user_csv, field_names=field_names, rows=rows)
            df = pd.read_csv(user_csv)
            st.dataframe(df)


#def write_csv(user_csv, field_names, rows):
def write_csv(user_csv, field_names, rows):
    with open(user_csv, "w") as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=field_names)
        writer.writeheader()
        for row in rows:
            writer.writerow(row)


def write_response(user_csv, response: str):
    """
    Write a response from an agent to a Streamlit app.

    Args:
        response_dict: The response from the agent.

    Returns:
        None.
    """

    df = pd.read_csv(user_csv)
    data = eval(response)
    st.dataframe(data=data, use_container_width=True)


if __name__ == "__main__":
    main()