HusseinBashir commited on
Commit
cc98495
·
verified ·
1 Parent(s): 4643464

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -63
app.py CHANGED
@@ -1,72 +1,46 @@
1
- import gradio as gr
2
- import torch
3
- import numpy as np
4
- import scipy.io.wavfile
5
  from transformers import VitsModel, AutoTokenizer
6
- import re
 
 
 
7
 
8
- model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
9
- tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
10
 
11
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
- model.to(device).eval()
 
 
13
 
14
- number_words = {
15
- 0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
16
- 6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
17
- 11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
18
- 14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
19
- 17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
20
- 20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
21
- 60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
22
- 100: "boqol", 1000: "kun"
23
- }
24
 
25
- def number_to_words(number):
26
- number = int(number)
27
- if number < 20:
28
- return number_words[number]
29
- elif number < 100:
30
- tens, unit = divmod(number, 10)
31
- return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "")
32
- elif number < 1000:
33
- hundreds, remainder = divmod(number, 100)
34
- part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
35
- if remainder:
36
- part += " iyo " + number_to_words(remainder)
37
- return part
38
- elif number < 1000000:
39
- thousands, remainder = divmod(number, 1000)
40
- words = []
41
- if thousands == 1:
42
- words.append("kun")
43
- else:
44
- words.append(number_to_words(thousands) + " kun")
45
- if remainder:
46
- words.append("iyo " + number_to_words(remainder))
47
- return " ".join(words)
48
- else:
49
- return str(number)
50
 
51
- def normalize_text(text):
52
- numbers = re.findall(r'\d+', text)
53
- for num in numbers:
54
- text = text.replace(num, number_to_words(num))
55
- return text
 
56
 
57
- def tts(text):
58
- text = normalize_text(text)
59
- inputs = tokenizer(text, return_tensors="pt").to(device)
60
  with torch.no_grad():
61
- waveform = model(**inputs).waveform.squeeze().cpu().numpy()
62
- output_path = "output.wav"
63
- scipy.io.wavfile.write(output_path, rate=model.config.sampling_rate, data=(waveform * 32767).astype(np.int16))
64
- return output_path
 
 
 
 
 
 
 
 
65
 
66
- gr.Interface(
67
- fn=tts,
68
- inputs=gr.Textbox(label="Qor qoraalka af-Soomaaliga"),
69
- outputs=gr.Audio(type="filepath", label="Codka TTS"),
70
- title="Somali TTS API",
71
- description="Ku qor qoraal si aad u maqasho codka af-Soomaaliga",
72
- ).launch()
 
1
+ from fastapi import FastAPI
2
+ from pydantic import BaseModel
 
 
3
  from transformers import VitsModel, AutoTokenizer
4
+ import torch
5
+ import base64
6
+ import io
7
+ import soundfile as sf
8
 
9
+ app = FastAPI()
 
10
 
11
+ # Load model & tokenizer hal mar marka server-ka bilaabmo
12
+ model_name = "Somali-tts/somali_tts_model"
13
+ model = VitsModel.from_pretrained(model_name)
14
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
15
 
16
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+ model.to(device)
18
+ model.eval()
 
 
 
 
 
 
 
19
 
20
+ class TTSRequest(BaseModel):
21
+ text: str
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ @app.post("/tts")
24
+ async def tts(request: TTSRequest):
25
+ text = request.text
26
+ # Tokenize input text
27
+ tokens = tokenizer(text, return_tensors="pt")
28
+ tokens = {k: v.to(device) for k, v in tokens.items()}
29
 
30
+ # Generate speech waveform tensor
 
 
31
  with torch.no_grad():
32
+ audio = model.generate_speech(tokens['input_ids'])
33
+
34
+ # Convert tensor to numpy array
35
+ audio_np = audio.squeeze().cpu().numpy()
36
+
37
+ # Write to WAV buffer
38
+ buffer = io.BytesIO()
39
+ sf.write(buffer, audio_np, samplerate=22050, format='WAV')
40
+ wav_bytes = buffer.getvalue()
41
+
42
+ # Encode wav bytes to base64
43
+ b64_audio = base64.b64encode(wav_bytes).decode('utf-8')
44
 
45
+ # Return base64 audio string with wav header
46
+ return {"audio": f"data:audio/wav;base64,{b64_audio}"}