|
import os
|
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
|
from pip._internal import main
|
|
|
|
main.main(['install', '-r', 'streamlit_drawable_canvas'])
|
|
import io
|
|
|
|
import pandas as pd
|
|
import streamlit as st
|
|
from streamlit_drawable_canvas import st_canvas
|
|
import hashlib
|
|
import pypdfium2
|
|
|
|
from texify.inference import batch_inference
|
|
from texify.model.model import load_model
|
|
from texify.model.processor import load_processor
|
|
from texify.output import replace_katex_invalid
|
|
from PIL import Image
|
|
|
|
MAX_WIDTH = 800
|
|
MAX_HEIGHT = 1000
|
|
|
|
|
|
@st.cache_resource()
|
|
def load_model_cached():
|
|
return load_model()
|
|
|
|
|
|
@st.cache_resource()
|
|
def load_processor_cached():
|
|
return load_processor()
|
|
|
|
|
|
@st.cache_data()
|
|
def infer_image(pil_image, bbox, temperature):
|
|
input_img = pil_image.crop(bbox)
|
|
model_output = batch_inference([input_img], model, processor, temperature=temperature)
|
|
return model_output[0]
|
|
|
|
|
|
def open_pdf(pdf_file):
|
|
stream = io.BytesIO(pdf_file.getvalue())
|
|
return pypdfium2.PdfDocument(stream)
|
|
|
|
|
|
@st.cache_data()
|
|
def get_page_image(pdf_file, page_num, dpi=96):
|
|
doc = open_pdf(pdf_file)
|
|
renderer = doc.render(
|
|
pypdfium2.PdfBitmap.to_pil,
|
|
page_indices=[page_num - 1],
|
|
scale=dpi / 72,
|
|
)
|
|
png = list(renderer)[0]
|
|
png_image = png.convert("RGB")
|
|
return png_image
|
|
|
|
|
|
@st.cache_data()
|
|
def get_uploaded_image(in_file):
|
|
return Image.open(in_file).convert("RGB")
|
|
|
|
|
|
def resize_image(pil_image):
|
|
if pil_image is None:
|
|
return
|
|
pil_image.thumbnail((MAX_WIDTH, MAX_HEIGHT), Image.Resampling.LANCZOS)
|
|
|
|
|
|
@st.cache_data()
|
|
def page_count(pdf_file):
|
|
doc = open_pdf(pdf_file)
|
|
return len(doc)
|
|
|
|
|
|
def get_canvas_hash(pil_image):
|
|
return hashlib.md5(pil_image.tobytes()).hexdigest()
|
|
|
|
|
|
@st.cache_data()
|
|
def get_image_size(pil_image):
|
|
if pil_image is None:
|
|
return MAX_HEIGHT, MAX_WIDTH
|
|
height, width = pil_image.height, pil_image.width
|
|
return height, width
|
|
|
|
|
|
st.set_page_config(layout="wide")
|
|
|
|
top_message = """### Texify
|
|
|
|
After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right.
|
|
|
|
If you have already cropped your image, select "OCR image" in the sidebar instead.
|
|
"""
|
|
|
|
st.markdown(top_message)
|
|
col1, col2 = st.columns([.7, .3])
|
|
|
|
model = load_model_cached()
|
|
processor = load_processor_cached()
|
|
|
|
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
|
|
if in_file is None:
|
|
st.stop()
|
|
|
|
filetype = in_file.type
|
|
whole_image = False
|
|
if "pdf" in filetype:
|
|
page_count = page_count(in_file)
|
|
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
|
|
|
|
pil_image = get_page_image(in_file, page_number)
|
|
else:
|
|
pil_image = get_uploaded_image(in_file)
|
|
whole_image = st.sidebar.button("OCR image")
|
|
|
|
|
|
resize_image(pil_image)
|
|
|
|
temperature = st.sidebar.slider("Generation temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05)
|
|
|
|
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas"
|
|
|
|
with col1:
|
|
|
|
canvas_result = st_canvas(
|
|
fill_color="rgba(255, 165, 0, 0.1)",
|
|
stroke_width=1,
|
|
stroke_color="#FFAA00",
|
|
background_color="#FFF",
|
|
background_image=pil_image,
|
|
update_streamlit=True,
|
|
height=get_image_size(pil_image)[0],
|
|
width=get_image_size(pil_image)[1],
|
|
drawing_mode="rect",
|
|
point_display_radius=0,
|
|
key=canvas_hash,
|
|
)
|
|
|
|
if canvas_result.json_data is not None or whole_image:
|
|
objects = pd.json_normalize(canvas_result.json_data["objects"])
|
|
bbox_list = None
|
|
if objects.shape[0] > 0:
|
|
boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]]
|
|
boxes["right"] = boxes["left"] + boxes["width"]
|
|
boxes["bottom"] = boxes["top"] + boxes["height"]
|
|
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist()
|
|
if whole_image:
|
|
bbox_list = [(0, 0, pil_image.width, pil_image.height)]
|
|
|
|
if bbox_list:
|
|
with col2:
|
|
inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list]
|
|
for idx, inference in enumerate(reversed(inferences)):
|
|
st.markdown(f"### {len(inferences) - idx}")
|
|
katex_markdown = replace_katex_invalid(inference)
|
|
st.markdown(katex_markdown)
|
|
st.code(inference)
|
|
st.divider()
|
|
|
|
with col2:
|
|
tips = """
|
|
### Usage tips
|
|
- Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info.
|
|
- Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple.
|
|
- You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is.
|
|
- Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere.
|
|
"""
|
|
st.markdown(tips) |