add file
Browse files
app.py
CHANGED
@@ -1,4 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # For some reason, transformers decided to use .isin for a simple op, which is not supported on MPS
|
3 |
+
|
4 |
+
import io
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
import streamlit as st
|
8 |
+
from streamlit_drawable_canvas import st_canvas
|
9 |
+
import hashlib
|
10 |
+
import pypdfium2
|
11 |
+
|
12 |
+
from texify.inference import batch_inference
|
13 |
+
from texify.model.model import load_model
|
14 |
+
from texify.model.processor import load_processor
|
15 |
+
from texify.output import replace_katex_invalid
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
MAX_WIDTH = 800
|
19 |
+
MAX_HEIGHT = 1000
|
20 |
+
|
21 |
+
|
22 |
+
@st.cache_resource()
|
23 |
+
def load_model_cached():
|
24 |
+
return load_model()
|
25 |
+
|
26 |
+
|
27 |
+
@st.cache_resource()
|
28 |
+
def load_processor_cached():
|
29 |
+
return load_processor()
|
30 |
+
|
31 |
+
|
32 |
+
@st.cache_data()
|
33 |
+
def infer_image(pil_image, bbox, temperature):
|
34 |
+
input_img = pil_image.crop(bbox)
|
35 |
+
model_output = batch_inference([input_img], model, processor, temperature=temperature)
|
36 |
+
return model_output[0]
|
37 |
+
|
38 |
+
|
39 |
+
def open_pdf(pdf_file):
|
40 |
+
stream = io.BytesIO(pdf_file.getvalue())
|
41 |
+
return pypdfium2.PdfDocument(stream)
|
42 |
+
|
43 |
+
|
44 |
+
@st.cache_data()
|
45 |
+
def get_page_image(pdf_file, page_num, dpi=96):
|
46 |
+
doc = open_pdf(pdf_file)
|
47 |
+
renderer = doc.render(
|
48 |
+
pypdfium2.PdfBitmap.to_pil,
|
49 |
+
page_indices=[page_num - 1],
|
50 |
+
scale=dpi / 72,
|
51 |
+
)
|
52 |
+
png = list(renderer)[0]
|
53 |
+
png_image = png.convert("RGB")
|
54 |
+
return png_image
|
55 |
+
|
56 |
+
|
57 |
+
@st.cache_data()
|
58 |
+
def get_uploaded_image(in_file):
|
59 |
+
return Image.open(in_file).convert("RGB")
|
60 |
+
|
61 |
+
|
62 |
+
def resize_image(pil_image):
|
63 |
+
if pil_image is None:
|
64 |
+
return
|
65 |
+
pil_image.thumbnail((MAX_WIDTH, MAX_HEIGHT), Image.Resampling.LANCZOS)
|
66 |
+
|
67 |
+
|
68 |
+
@st.cache_data()
|
69 |
+
def page_count(pdf_file):
|
70 |
+
doc = open_pdf(pdf_file)
|
71 |
+
return len(doc)
|
72 |
+
|
73 |
+
|
74 |
+
def get_canvas_hash(pil_image):
|
75 |
+
return hashlib.md5(pil_image.tobytes()).hexdigest()
|
76 |
+
|
77 |
+
|
78 |
+
@st.cache_data()
|
79 |
+
def get_image_size(pil_image):
|
80 |
+
if pil_image is None:
|
81 |
+
return MAX_HEIGHT, MAX_WIDTH
|
82 |
+
height, width = pil_image.height, pil_image.width
|
83 |
+
return height, width
|
84 |
+
|
85 |
+
|
86 |
+
st.set_page_config(layout="wide")
|
87 |
+
|
88 |
+
top_message = """### Texify
|
89 |
+
|
90 |
+
After the model loads, upload an image or a pdf, then draw a box around the equation or text you want to OCR by clicking and dragging. Texify will convert it to Markdown with LaTeX math on the right.
|
91 |
+
|
92 |
+
If you have already cropped your image, select "OCR image" in the sidebar instead.
|
93 |
+
"""
|
94 |
+
|
95 |
+
st.markdown(top_message)
|
96 |
+
col1, col2 = st.columns([.7, .3])
|
97 |
+
|
98 |
+
model = load_model_cached()
|
99 |
+
processor = load_processor_cached()
|
100 |
+
|
101 |
+
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
|
102 |
+
if in_file is None:
|
103 |
+
st.stop()
|
104 |
+
|
105 |
+
filetype = in_file.type
|
106 |
+
whole_image = False
|
107 |
+
if "pdf" in filetype:
|
108 |
+
page_count = page_count(in_file)
|
109 |
+
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
|
110 |
+
|
111 |
+
pil_image = get_page_image(in_file, page_number)
|
112 |
+
else:
|
113 |
+
pil_image = get_uploaded_image(in_file)
|
114 |
+
whole_image = st.sidebar.button("OCR image")
|
115 |
+
|
116 |
+
# Resize to max bounds
|
117 |
+
resize_image(pil_image)
|
118 |
+
|
119 |
+
temperature = st.sidebar.slider("Generation temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05)
|
120 |
+
|
121 |
+
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas"
|
122 |
+
|
123 |
+
with col1:
|
124 |
+
# Create a canvas component
|
125 |
+
canvas_result = st_canvas(
|
126 |
+
fill_color="rgba(255, 165, 0, 0.1)", # Fixed fill color with some opacity
|
127 |
+
stroke_width=1,
|
128 |
+
stroke_color="#FFAA00",
|
129 |
+
background_color="#FFF",
|
130 |
+
background_image=pil_image,
|
131 |
+
update_streamlit=True,
|
132 |
+
height=get_image_size(pil_image)[0],
|
133 |
+
width=get_image_size(pil_image)[1],
|
134 |
+
drawing_mode="rect",
|
135 |
+
point_display_radius=0,
|
136 |
+
key=canvas_hash,
|
137 |
+
)
|
138 |
+
|
139 |
+
if canvas_result.json_data is not None or whole_image:
|
140 |
+
objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
|
141 |
+
bbox_list = None
|
142 |
+
if objects.shape[0] > 0:
|
143 |
+
boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]]
|
144 |
+
boxes["right"] = boxes["left"] + boxes["width"]
|
145 |
+
boxes["bottom"] = boxes["top"] + boxes["height"]
|
146 |
+
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist()
|
147 |
+
if whole_image:
|
148 |
+
bbox_list = [(0, 0, pil_image.width, pil_image.height)]
|
149 |
+
|
150 |
+
if bbox_list:
|
151 |
+
with col2:
|
152 |
+
inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list]
|
153 |
+
for idx, inference in enumerate(reversed(inferences)):
|
154 |
+
st.markdown(f"### {len(inferences) - idx}")
|
155 |
+
katex_markdown = replace_katex_invalid(inference)
|
156 |
+
st.markdown(katex_markdown)
|
157 |
+
st.code(inference)
|
158 |
+
st.divider()
|
159 |
|
160 |
+
with col2:
|
161 |
+
tips = """
|
162 |
+
### Usage tips
|
163 |
+
- Don't make your boxes too small or too large. See the examples and the video in the [README](https://github.com/vikParuchuri/texify) for more info.
|
164 |
+
- Texify is sensitive to how you draw the box around the text you want to OCR. If you get bad results, try selecting a slightly different box, or splitting the box into multiple.
|
165 |
+
- You can try changing the temperature value on the left if you don't get good results. This controls how "creative" the model is.
|
166 |
+
- Sometimes KaTeX won't be able to render an equation (red error text), but it will still be valid LaTeX. You can copy the LaTeX and render it elsewhere.
|
167 |
+
"""
|
168 |
+
st.markdown(tips)
|