Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
import os | |
#import whisper | |
import matplotlib as plt | |
# whisper_model = whisper.load_model('large-v2') # Whisper 모델을 불러오기 | |
path = "Hyeonsieun/NTtoGT_1epoch" | |
tokenizer = T5Tokenizer.from_pretrained(path) | |
model = T5ForConditionalGeneration.from_pretrained(path) | |
def do_correction(text): | |
input_text = f"translate the text pronouncing the formula to a LaTeX equation: {text}" | |
inputs = tokenizer.encode( | |
input_text, | |
return_tensors='pt', | |
max_length=325, | |
padding='max_length', | |
truncation=True | |
) | |
# Get correct sentence ids. | |
corrected_ids = model.generate( | |
inputs, | |
max_length=325, | |
num_beams=5, # `num_beams=1` indicated temperature sampling. | |
early_stopping=True | |
) | |
# Decode. | |
corrected_sentence = tokenizer.decode( | |
corrected_ids[0], | |
skip_special_tokens=False | |
) | |
return corrected_sentence | |
gr.Interface(fn=do_correction, inputs="text", outputs="text").launch() | |