Spaces:
Running
Running
File size: 21,054 Bytes
e72f2a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
from typing import List, Tuple
import scipy
import numpy as np
# SPOTIFY
def get_inferred_onsets(onset_roll: np.array, note_roll: np.array, n_diff: int = 2) -> np.array:
"""
Infer onsets from large changes in note roll matrix amplitudes.
Modified from https://github.com/spotify/basic-pitch/blob/main/basic_pitch/note_creation.py
:param onset_roll: Onset activation matrix (n_times, n_freqs).
:param note_roll: Frame-level note activation matrix (n_times, n_freqs).
:param n_diff: Differences used to detect onsets.
:return: The maximum between the predicted onsets and its differences.
"""
diffs = []
for n in range(1, n_diff + 1):
frames_appended = np.concatenate([np.zeros((n, note_roll.shape[1])), note_roll])
diffs.append(frames_appended[n:, :] - frames_appended[:-n, :])
frame_diff = np.min(diffs, axis=0)
frame_diff[frame_diff < 0] = 0
frame_diff[:n_diff, :] = 0
frame_diff = np.max(onset_roll) * frame_diff / np.max(frame_diff) # rescale to have the same max as onsets
max_onsets_diff = np.max([onset_roll, frame_diff],
axis=0) # use the max of the predicted onsets and the differences
return max_onsets_diff
def spotify_create_notes(
note_roll: np.array,
onset_roll: np.array,
onset_thresh: float,
frame_thresh: float,
min_note_len: int,
infer_onsets: bool,
note_low : int, #self.labeling.midi_centers[0]
note_high : int, #self.labeling.midi_centers[-1],
melodia_trick: bool = True,
energy_tol: int = 11,
) -> List[Tuple[int, int, int, float]]:
"""Decode raw model output to polyphonic note events
Modified from https://github.com/spotify/basic-pitch/blob/main/basic_pitch/note_creation.py
Args:
note_roll: Frame activation matrix (n_times, n_freqs).
onset_roll: Onset activation matrix (n_times, n_freqs).
onset_thresh: Minimum amplitude of an onset activation to be considered an onset.
frame_thresh: Minimum amplitude of a frame activation for a note to remain "on".
min_note_len: Minimum allowed note length in frames.
infer_onsets: If True, add additional onsets when there are large differences in frame amplitudes.
melodia_trick : Whether to use the melodia trick to better detect notes.
energy_tol: Drop notes below this energy.
Returns:
list of tuples [(start_time_frames, end_time_frames, pitch_midi, amplitude)]
representing the note events, where amplitude is a number between 0 and 1
"""
n_frames = note_roll.shape[0]
# use onsets inferred from frames in addition to the predicted onsets
if infer_onsets:
onset_roll = get_inferred_onsets(onset_roll, note_roll)
peak_thresh_mat = np.zeros(onset_roll.shape)
peaks = scipy.signal.argrelmax(onset_roll, axis=0)
peak_thresh_mat[peaks] = onset_roll[peaks]
onset_idx = np.where(peak_thresh_mat >= onset_thresh)
onset_time_idx = onset_idx[0][::-1] # sort to go backwards in time
onset_freq_idx = onset_idx[1][::-1] # sort to go backwards in time
remaining_energy = np.zeros(note_roll.shape)
remaining_energy[:, :] = note_roll[:, :]
# loop over onsets
note_events = []
for note_start_idx, freq_idx in zip(onset_time_idx, onset_freq_idx):
# if we're too close to the end of the audio, continue
if note_start_idx >= n_frames - 1:
continue
# find time index at this frequency band where the frames drop below an energy threshold
i = note_start_idx + 1
k = 0 # number of frames since energy dropped below threshold
while i < n_frames - 1 and k < energy_tol:
if remaining_energy[i, freq_idx] < frame_thresh:
k += 1
else:
k = 0
i += 1
i -= k # go back to frame above threshold
# if the note is too short, skip it
if i - note_start_idx <= min_note_len:
continue
remaining_energy[note_start_idx:i, freq_idx] = 0
if freq_idx < note_high:
remaining_energy[note_start_idx:i, freq_idx + 1] = 0
if freq_idx > note_low:
remaining_energy[note_start_idx:i, freq_idx - 1] = 0
# add the note
amplitude = np.mean(note_roll[note_start_idx:i, freq_idx])
note_events.append(
(
note_start_idx,
i,
freq_idx + note_low,
amplitude,
)
)
if melodia_trick:
energy_shape = remaining_energy.shape
while np.max(remaining_energy) > frame_thresh:
i_mid, freq_idx = np.unravel_index(np.argmax(remaining_energy), energy_shape)
remaining_energy[i_mid, freq_idx] = 0
# forward pass
i = i_mid + 1
k = 0
while i < n_frames - 1 and k < energy_tol:
if remaining_energy[i, freq_idx] < frame_thresh:
k += 1
else:
k = 0
remaining_energy[i, freq_idx] = 0
if freq_idx < note_high:
remaining_energy[i, freq_idx + 1] = 0
if freq_idx > note_low:
remaining_energy[i, freq_idx - 1] = 0
i += 1
i_end = i - 1 - k # go back to frame above threshold
# backward pass
i = i_mid - 1
k = 0
while i > 0 and k < energy_tol:
if remaining_energy[i, freq_idx] < frame_thresh:
k += 1
else:
k = 0
remaining_energy[i, freq_idx] = 0
if freq_idx < note_high:
remaining_energy[i, freq_idx + 1] = 0
if freq_idx > note_low:
remaining_energy[i, freq_idx - 1] = 0
i -= 1
i_start = i + 1 + k # go back to frame above threshold
assert i_start >= 0, "{}".format(i_start)
assert i_end < n_frames
if i_end - i_start <= min_note_len:
# note is too short, skip it
continue
# add the note
amplitude = np.mean(note_roll[i_start:i_end, freq_idx])
note_events.append(
(
i_start,
i_end,
freq_idx + note_low,
amplitude,
)
)
return note_events
# TIKTOK
def note_detection_with_onset_offset_regress(frame_output, onset_output,
onset_shift_output, offset_output, offset_shift_output, velocity_output,
frame_threshold):
"""Process prediction matrices to note events information.
First, detect onsets with onset outputs. Then, detect offsets
with frame and offset outputs.
Args:
frame_output: (frames_num,)
onset_output: (frames_num,)
onset_shift_output: (frames_num,)
offset_output: (frames_num,)
offset_shift_output: (frames_num,)
velocity_output: (frames_num,)
frame_threshold: float
Returns:
output_tuples: list of [bgn, fin, onset_shift, offset_shift, normalized_velocity],
e.g., [
[1821, 1909, 0.47498, 0.3048533, 0.72119445],
[1909, 1947, 0.30730522, -0.45764327, 0.64200014],
...]
"""
output_tuples = []
bgn = None
frame_disappear = None
offset_occur = None
for i in range(onset_output.shape[0]):
if onset_output[i] == 1:
"""Onset detected"""
if bgn:
"""Consecutive onsets. E.g., pedal is not released, but two
consecutive notes being played."""
fin = max(i - 1, 0)
output_tuples.append([bgn, fin, onset_shift_output[bgn],
0, velocity_output[bgn]])
frame_disappear, offset_occur = None, None
bgn = i
if bgn and i > bgn:
"""If onset found, then search offset"""
if frame_output[i] <= frame_threshold and not frame_disappear:
"""Frame disappear detected"""
frame_disappear = i
if offset_output[i] == 1 and not offset_occur:
"""Offset detected"""
offset_occur = i
if frame_disappear:
if offset_occur and offset_occur - bgn > frame_disappear - offset_occur:
"""bgn --------- offset_occur --- frame_disappear"""
fin = offset_occur
else:
"""bgn --- offset_occur --------- frame_disappear"""
fin = frame_disappear
output_tuples.append([bgn, fin, onset_shift_output[bgn],
offset_shift_output[fin], velocity_output[bgn]])
bgn, frame_disappear, offset_occur = None, None, None
if bgn and (i - bgn >= 600 or i == onset_output.shape[0] - 1):
"""Offset not detected"""
fin = i
output_tuples.append([bgn, fin, onset_shift_output[bgn],
offset_shift_output[fin], velocity_output[bgn]])
bgn, frame_disappear, offset_occur = None, None, None
# Sort pairs by onsets
output_tuples.sort(key=lambda pair: pair[0])
return output_tuples
class RegressionPostProcessor(object):
def __init__(self, frames_per_second, classes_num, onset_threshold,
offset_threshold, frame_threshold, pedal_offset_threshold,
begin_note):
"""Postprocess the output probabilities of a transription model to MIDI
events.
Args:
frames_per_second: float
classes_num: int
onset_threshold: float
offset_threshold: float
frame_threshold: float
pedal_offset_threshold: float
"""
self.frames_per_second = frames_per_second
self.classes_num = classes_num
self.onset_threshold = onset_threshold
self.offset_threshold = offset_threshold
self.frame_threshold = frame_threshold
self.pedal_offset_threshold = pedal_offset_threshold
self.begin_note = begin_note
self.velocity_scale = 128
def output_dict_to_midi_events(self, output_dict):
"""Main function. Post process model outputs to MIDI events.
Args:
output_dict: {
'reg_onset_output': (segment_frames, classes_num),
'reg_offset_output': (segment_frames, classes_num),
'frame_output': (segment_frames, classes_num),
'velocity_output': (segment_frames, classes_num),
'reg_pedal_onset_output': (segment_frames, 1),
'reg_pedal_offset_output': (segment_frames, 1),
'pedal_frame_output': (segment_frames, 1)}
Outputs:
est_note_events: list of dict, e.g. [
{'onset_time': 39.74, 'offset_time': 39.87, 'midi_note': 27, 'velocity': 83},
{'onset_time': 11.98, 'offset_time': 12.11, 'midi_note': 33, 'velocity': 88}]
est_pedal_events: list of dict, e.g. [
{'onset_time': 0.17, 'offset_time': 0.96},
{'osnet_time': 1.17, 'offset_time': 2.65}]
"""
output_dict['frame_output'] = output_dict['note']
output_dict['velocity_output'] = output_dict['note']
output_dict['reg_onset_output'] = output_dict['onset']
output_dict['reg_offset_output'] = output_dict['offset']
# Post process piano note outputs to piano note and pedal events information
(est_on_off_note_vels, est_pedal_on_offs) = \
self.output_dict_to_note_pedal_arrays(output_dict)
"""est_on_off_note_vels: (events_num, 4), the four columns are: [onset_time, offset_time, piano_note, velocity],
est_pedal_on_offs: (pedal_events_num, 2), the two columns are: [onset_time, offset_time]"""
# Reformat notes to MIDI events
est_note_events = self.detected_notes_to_events(est_on_off_note_vels)
if est_pedal_on_offs is None:
est_pedal_events = None
else:
est_pedal_events = self.detected_pedals_to_events(est_pedal_on_offs)
return est_note_events, est_pedal_events
def output_dict_to_note_pedal_arrays(self, output_dict):
"""Postprocess the output probabilities of a transription model to MIDI
events.
Args:
output_dict: dict, {
'reg_onset_output': (frames_num, classes_num),
'reg_offset_output': (frames_num, classes_num),
'frame_output': (frames_num, classes_num),
'velocity_output': (frames_num, classes_num),
...}
Returns:
est_on_off_note_vels: (events_num, 4), the 4 columns are onset_time,
offset_time, piano_note and velocity. E.g. [
[39.74, 39.87, 27, 0.65],
[11.98, 12.11, 33, 0.69],
...]
est_pedal_on_offs: (pedal_events_num, 2), the 2 columns are onset_time
and offset_time. E.g. [
[0.17, 0.96],
[1.17, 2.65],
...]
"""
# ------ 1. Process regression outputs to binarized outputs ------
# For example, onset or offset of [0., 0., 0.15, 0.30, 0.40, 0.35, 0.20, 0.05, 0., 0.]
# will be processed to [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]
# Calculate binarized onset output from regression output
(onset_output, onset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_onset_output'],
threshold=self.onset_threshold, neighbour=2)
output_dict['onset_output'] = onset_output # Values are 0 or 1
output_dict['onset_shift_output'] = onset_shift_output
# Calculate binarized offset output from regression output
(offset_output, offset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_offset_output'],
threshold=self.offset_threshold, neighbour=4)
output_dict['offset_output'] = offset_output # Values are 0 or 1
output_dict['offset_shift_output'] = offset_shift_output
if 'reg_pedal_onset_output' in output_dict.keys():
"""Pedal onsets are not used in inference. Instead, frame-wise pedal
predictions are used to detect onsets. We empirically found this is
more accurate to detect pedal onsets."""
pass
if 'reg_pedal_offset_output' in output_dict.keys():
# Calculate binarized pedal offset output from regression output
(pedal_offset_output, pedal_offset_shift_output) = \
self.get_binarized_output_from_regression(
reg_output=output_dict['reg_pedal_offset_output'],
threshold=self.pedal_offset_threshold, neighbour=4)
output_dict['pedal_offset_output'] = pedal_offset_output # Values are 0 or 1
output_dict['pedal_offset_shift_output'] = pedal_offset_shift_output
# ------ 2. Process matrices results to event results ------
# Detect piano notes from output_dict
est_on_off_note_vels = self.output_dict_to_detected_notes(output_dict)
est_pedal_on_offs = None
return est_on_off_note_vels, est_pedal_on_offs
def get_binarized_output_from_regression(self, reg_output, threshold, neighbour):
"""Calculate binarized output and shifts of onsets or offsets from the
regression results.
Args:
reg_output: (frames_num, classes_num)
threshold: float
neighbour: int
Returns:
binary_output: (frames_num, classes_num)
shift_output: (frames_num, classes_num)
"""
binary_output = np.zeros_like(reg_output)
shift_output = np.zeros_like(reg_output)
(frames_num, classes_num) = reg_output.shape
for k in range(classes_num):
x = reg_output[:, k]
for n in range(neighbour, frames_num - neighbour):
if x[n] > threshold and self.is_monotonic_neighbour(x, n, neighbour):
binary_output[n, k] = 1
"""See Section III-D in [1] for deduction.
[1] Q. Kong, et al., High-resolution Piano Transcription
with Pedals by Regressing Onsets and Offsets Times, 2020."""
if x[n - 1] > x[n + 1]:
shift = (x[n + 1] - x[n - 1]) / (x[n] - x[n + 1]) / 2
else:
shift = (x[n + 1] - x[n - 1]) / (x[n] - x[n - 1]) / 2
shift_output[n, k] = shift
return binary_output, shift_output
def is_monotonic_neighbour(self, x, n, neighbour):
"""Detect if values are monotonic in both side of x[n].
Args:
x: (frames_num,)
n: int
neighbour: int
Returns:
monotonic: bool
"""
monotonic = True
for i in range(neighbour):
if x[n - i] < x[n - i - 1]:
monotonic = False
if x[n + i] < x[n + i + 1]:
monotonic = False
return monotonic
def output_dict_to_detected_notes(self, output_dict):
"""Postprocess output_dict to piano notes.
Args:
output_dict: dict, e.g. {
'onset_output': (frames_num, classes_num),
'onset_shift_output': (frames_num, classes_num),
'offset_output': (frames_num, classes_num),
'offset_shift_output': (frames_num, classes_num),
'frame_output': (frames_num, classes_num),
'onset_output': (frames_num, classes_num),
...}
Returns:
est_on_off_note_vels: (notes, 4), the four columns are onsets, offsets,
MIDI notes and velocities. E.g.,
[[39.7375, 39.7500, 27., 0.6638],
[11.9824, 12.5000, 33., 0.6892],
...]
"""
est_tuples = []
est_midi_notes = []
classes_num = output_dict['frame_output'].shape[-1]
for piano_note in range(classes_num):
"""Detect piano notes"""
est_tuples_per_note = note_detection_with_onset_offset_regress(
frame_output=output_dict['frame_output'][:, piano_note],
onset_output=output_dict['onset_output'][:, piano_note],
onset_shift_output=output_dict['onset_shift_output'][:, piano_note],
offset_output=output_dict['offset_output'][:, piano_note],
offset_shift_output=output_dict['offset_shift_output'][:, piano_note],
velocity_output=output_dict['velocity_output'][:, piano_note],
frame_threshold=self.frame_threshold)
est_tuples += est_tuples_per_note
est_midi_notes += [piano_note + self.begin_note] * len(est_tuples_per_note)
est_tuples = np.array(est_tuples) # (notes, 5)
"""(notes, 5), the five columns are onset, offset, onset_shift,
offset_shift and normalized_velocity"""
est_midi_notes = np.array(est_midi_notes) # (notes,)
onset_times = (est_tuples[:, 0] + est_tuples[:, 2]) / self.frames_per_second
offset_times = (est_tuples[:, 1] + est_tuples[:, 3]) / self.frames_per_second
velocities = est_tuples[:, 4]
est_on_off_note_vels = np.stack((onset_times, offset_times, est_midi_notes, velocities), axis=-1)
"""(notes, 3), the three columns are onset_times, offset_times and velocity."""
est_on_off_note_vels = est_on_off_note_vels.astype(np.float32)
return est_on_off_note_vels
def detected_notes_to_events(self, est_on_off_note_vels):
"""Reformat detected notes to midi events.
Args:
est_on_off_vels: (notes, 3), the three columns are onset_times,
offset_times and velocity. E.g.
[[32.8376, 35.7700, 0.7932],
[37.3712, 39.9300, 0.8058],
...]
Returns:
midi_events, list, e.g.,
[{'onset_time': 39.7376, 'offset_time': 39.75, 'midi_note': 27, 'velocity': 84},
{'onset_time': 11.9824, 'offset_time': 12.50, 'midi_note': 33, 'velocity': 88},
...]
"""
midi_events = []
for i in range(est_on_off_note_vels.shape[0]):
midi_events.append({
'onset_time': est_on_off_note_vels[i][0],
'offset_time': est_on_off_note_vels[i][1],
'midi_note': int(est_on_off_note_vels[i][2]),
'velocity': int(est_on_off_note_vels[i][3] * self.velocity_scale)})
return midi_events
|