File size: 21,054 Bytes
e72f2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
from typing import List, Tuple
import scipy
import numpy as np


# SPOTIFY

def get_inferred_onsets(onset_roll: np.array, note_roll: np.array, n_diff: int = 2) -> np.array:
    """
    Infer onsets from large changes in note roll matrix amplitudes.
    Modified from https://github.com/spotify/basic-pitch/blob/main/basic_pitch/note_creation.py
    :param onset_roll: Onset activation matrix (n_times, n_freqs).
    :param note_roll: Frame-level note activation matrix (n_times, n_freqs).
    :param n_diff: Differences used to detect onsets.
    :return: The maximum between the predicted onsets and its differences.
    """

    diffs = []
    for n in range(1, n_diff + 1):
        frames_appended = np.concatenate([np.zeros((n, note_roll.shape[1])), note_roll])
        diffs.append(frames_appended[n:, :] - frames_appended[:-n, :])
    frame_diff = np.min(diffs, axis=0)
    frame_diff[frame_diff < 0] = 0
    frame_diff[:n_diff, :] = 0
    frame_diff = np.max(onset_roll) * frame_diff / np.max(frame_diff)  # rescale to have the same max as onsets

    max_onsets_diff = np.max([onset_roll, frame_diff],
                             axis=0)  # use the max of the predicted onsets and the differences

    return max_onsets_diff



def spotify_create_notes(
        note_roll: np.array,
        onset_roll: np.array,
        onset_thresh: float,
        frame_thresh: float,
        min_note_len: int,
        infer_onsets: bool,
        note_low : int, #self.labeling.midi_centers[0]
        note_high : int, #self.labeling.midi_centers[-1],
        melodia_trick: bool = True,
        energy_tol: int = 11,
) -> List[Tuple[int, int, int, float]]:
    """Decode raw model output to polyphonic note events
    Modified from https://github.com/spotify/basic-pitch/blob/main/basic_pitch/note_creation.py
    Args:
        note_roll: Frame activation matrix (n_times, n_freqs).
        onset_roll: Onset activation matrix (n_times, n_freqs).
        onset_thresh: Minimum amplitude of an onset activation to be considered an onset.
        frame_thresh: Minimum amplitude of a frame activation for a note to remain "on".
        min_note_len: Minimum allowed note length in frames.
        infer_onsets: If True, add additional onsets when there are large differences in frame amplitudes.
        melodia_trick : Whether to use the melodia trick to better detect notes.
        energy_tol: Drop notes below this energy.
    Returns:
        list of tuples [(start_time_frames, end_time_frames, pitch_midi, amplitude)]
        representing the note events, where amplitude is a number between 0 and 1
    """

    n_frames = note_roll.shape[0]

    # use onsets inferred from frames in addition to the predicted onsets
    if infer_onsets:
        onset_roll = get_inferred_onsets(onset_roll, note_roll)

    peak_thresh_mat = np.zeros(onset_roll.shape)
    peaks = scipy.signal.argrelmax(onset_roll, axis=0)
    peak_thresh_mat[peaks] = onset_roll[peaks]

    onset_idx = np.where(peak_thresh_mat >= onset_thresh)
    onset_time_idx = onset_idx[0][::-1]  # sort to go backwards in time
    onset_freq_idx = onset_idx[1][::-1]  # sort to go backwards in time

    remaining_energy = np.zeros(note_roll.shape)
    remaining_energy[:, :] = note_roll[:, :]

    # loop over onsets
    note_events = []
    for note_start_idx, freq_idx in zip(onset_time_idx, onset_freq_idx):
        # if we're too close to the end of the audio, continue
        if note_start_idx >= n_frames - 1:
            continue

        # find time index at this frequency band where the frames drop below an energy threshold
        i = note_start_idx + 1
        k = 0  # number of frames since energy dropped below threshold
        while i < n_frames - 1 and k < energy_tol:
            if remaining_energy[i, freq_idx] < frame_thresh:
                k += 1
            else:
                k = 0
            i += 1

        i -= k  # go back to frame above threshold

        # if the note is too short, skip it
        if i - note_start_idx <= min_note_len:
            continue

        remaining_energy[note_start_idx:i, freq_idx] = 0
        if freq_idx < note_high:
            remaining_energy[note_start_idx:i, freq_idx + 1] = 0
        if freq_idx > note_low:
            remaining_energy[note_start_idx:i, freq_idx - 1] = 0

        # add the note
        amplitude = np.mean(note_roll[note_start_idx:i, freq_idx])
        note_events.append(
            (
                note_start_idx,
                i,
                freq_idx + note_low,
                amplitude,
            )
        )

    if melodia_trick:
        energy_shape = remaining_energy.shape

        while np.max(remaining_energy) > frame_thresh:
            i_mid, freq_idx = np.unravel_index(np.argmax(remaining_energy), energy_shape)
            remaining_energy[i_mid, freq_idx] = 0

            # forward pass
            i = i_mid + 1
            k = 0
            while i < n_frames - 1 and k < energy_tol:
                if remaining_energy[i, freq_idx] < frame_thresh:
                    k += 1
                else:
                    k = 0

                remaining_energy[i, freq_idx] = 0
                if freq_idx < note_high:
                    remaining_energy[i, freq_idx + 1] = 0
                if freq_idx > note_low:
                    remaining_energy[i, freq_idx - 1] = 0

                i += 1

            i_end = i - 1 - k  # go back to frame above threshold

            # backward pass
            i = i_mid - 1
            k = 0
            while i > 0 and k < energy_tol:
                if remaining_energy[i, freq_idx] < frame_thresh:
                    k += 1
                else:
                    k = 0

                remaining_energy[i, freq_idx] = 0
                if freq_idx < note_high:
                    remaining_energy[i, freq_idx + 1] = 0
                if freq_idx > note_low:
                    remaining_energy[i, freq_idx - 1] = 0

                i -= 1

            i_start = i + 1 + k  # go back to frame above threshold
            assert i_start >= 0, "{}".format(i_start)
            assert i_end < n_frames

            if i_end - i_start <= min_note_len:
                # note is too short, skip it
                continue

            # add the note
            amplitude = np.mean(note_roll[i_start:i_end, freq_idx])
            note_events.append(
                (
                    i_start,
                    i_end,
                    freq_idx + note_low,
                    amplitude,
                )
            )

    return note_events



# TIKTOK


def note_detection_with_onset_offset_regress(frame_output, onset_output,
                                             onset_shift_output, offset_output, offset_shift_output, velocity_output,
                                             frame_threshold):
    """Process prediction matrices to note events information.
    First, detect onsets with onset outputs. Then, detect offsets
    with frame and offset outputs.

    Args:
      frame_output: (frames_num,)
      onset_output: (frames_num,)
      onset_shift_output: (frames_num,)
      offset_output: (frames_num,)
      offset_shift_output: (frames_num,)
      velocity_output: (frames_num,)
      frame_threshold: float
    Returns:
      output_tuples: list of [bgn, fin, onset_shift, offset_shift, normalized_velocity],
      e.g., [
        [1821, 1909, 0.47498, 0.3048533, 0.72119445],
        [1909, 1947, 0.30730522, -0.45764327, 0.64200014],
        ...]
    """
    output_tuples = []
    bgn = None
    frame_disappear = None
    offset_occur = None

    for i in range(onset_output.shape[0]):
        if onset_output[i] == 1:
            """Onset detected"""
            if bgn:
                """Consecutive onsets. E.g., pedal is not released, but two 
                consecutive notes being played."""
                fin = max(i - 1, 0)
                output_tuples.append([bgn, fin, onset_shift_output[bgn],
                                      0, velocity_output[bgn]])
                frame_disappear, offset_occur = None, None
            bgn = i

        if bgn and i > bgn:
            """If onset found, then search offset"""
            if frame_output[i] <= frame_threshold and not frame_disappear:
                """Frame disappear detected"""
                frame_disappear = i

            if offset_output[i] == 1 and not offset_occur:
                """Offset detected"""
                offset_occur = i

            if frame_disappear:
                if offset_occur and offset_occur - bgn > frame_disappear - offset_occur:
                    """bgn --------- offset_occur --- frame_disappear"""
                    fin = offset_occur
                else:
                    """bgn --- offset_occur --------- frame_disappear"""
                    fin = frame_disappear
                output_tuples.append([bgn, fin, onset_shift_output[bgn],
                                      offset_shift_output[fin], velocity_output[bgn]])
                bgn, frame_disappear, offset_occur = None, None, None

            if bgn and (i - bgn >= 600 or i == onset_output.shape[0] - 1):
                """Offset not detected"""
                fin = i
                output_tuples.append([bgn, fin, onset_shift_output[bgn],
                                      offset_shift_output[fin], velocity_output[bgn]])
                bgn, frame_disappear, offset_occur = None, None, None

    # Sort pairs by onsets
    output_tuples.sort(key=lambda pair: pair[0])

    return output_tuples


class RegressionPostProcessor(object):
    def __init__(self, frames_per_second, classes_num, onset_threshold,
                 offset_threshold, frame_threshold, pedal_offset_threshold,
                 begin_note):
        """Postprocess the output probabilities of a transription model to MIDI
        events.

        Args:
          frames_per_second: float
          classes_num: int
          onset_threshold: float
          offset_threshold: float
          frame_threshold: float
          pedal_offset_threshold: float
        """
        self.frames_per_second = frames_per_second
        self.classes_num = classes_num
        self.onset_threshold = onset_threshold
        self.offset_threshold = offset_threshold
        self.frame_threshold = frame_threshold
        self.pedal_offset_threshold = pedal_offset_threshold
        self.begin_note = begin_note
        self.velocity_scale = 128

    def output_dict_to_midi_events(self, output_dict):
        """Main function. Post process model outputs to MIDI events.

        Args:
          output_dict: {
            'reg_onset_output': (segment_frames, classes_num),
            'reg_offset_output': (segment_frames, classes_num),
            'frame_output': (segment_frames, classes_num),
            'velocity_output': (segment_frames, classes_num),
            'reg_pedal_onset_output': (segment_frames, 1),
            'reg_pedal_offset_output': (segment_frames, 1),
            'pedal_frame_output': (segment_frames, 1)}

        Outputs:
          est_note_events: list of dict, e.g. [
            {'onset_time': 39.74, 'offset_time': 39.87, 'midi_note': 27, 'velocity': 83},
            {'onset_time': 11.98, 'offset_time': 12.11, 'midi_note': 33, 'velocity': 88}]

          est_pedal_events: list of dict, e.g. [
            {'onset_time': 0.17, 'offset_time': 0.96},
            {'osnet_time': 1.17, 'offset_time': 2.65}]
        """
        output_dict['frame_output'] = output_dict['note']
        output_dict['velocity_output'] = output_dict['note']
        output_dict['reg_onset_output'] = output_dict['onset']
        output_dict['reg_offset_output'] = output_dict['offset']
        # Post process piano note outputs to piano note and pedal events information
        (est_on_off_note_vels, est_pedal_on_offs) = \
            self.output_dict_to_note_pedal_arrays(output_dict)
        """est_on_off_note_vels: (events_num, 4), the four columns are: [onset_time, offset_time, piano_note, velocity], 
        est_pedal_on_offs: (pedal_events_num, 2), the two columns are: [onset_time, offset_time]"""

        # Reformat notes to MIDI events
        est_note_events = self.detected_notes_to_events(est_on_off_note_vels)

        if est_pedal_on_offs is None:
            est_pedal_events = None
        else:
            est_pedal_events = self.detected_pedals_to_events(est_pedal_on_offs)

        return est_note_events, est_pedal_events

    def output_dict_to_note_pedal_arrays(self, output_dict):
        """Postprocess the output probabilities of a transription model to MIDI
        events.

        Args:
          output_dict: dict, {
            'reg_onset_output': (frames_num, classes_num),
            'reg_offset_output': (frames_num, classes_num),
            'frame_output': (frames_num, classes_num),
            'velocity_output': (frames_num, classes_num),
            ...}

        Returns:
          est_on_off_note_vels: (events_num, 4), the 4 columns are onset_time,
            offset_time, piano_note and velocity. E.g. [
             [39.74, 39.87, 27, 0.65],
             [11.98, 12.11, 33, 0.69],
             ...]

          est_pedal_on_offs: (pedal_events_num, 2), the 2 columns are onset_time
            and offset_time. E.g. [
             [0.17, 0.96],
             [1.17, 2.65],
             ...]
        """

        # ------ 1. Process regression outputs to binarized outputs ------
        # For example, onset or offset of [0., 0., 0.15, 0.30, 0.40, 0.35, 0.20, 0.05, 0., 0.]
        # will be processed to [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]

        # Calculate binarized onset output from regression output
        (onset_output, onset_shift_output) = \
            self.get_binarized_output_from_regression(
                reg_output=output_dict['reg_onset_output'],
                threshold=self.onset_threshold, neighbour=2)

        output_dict['onset_output'] = onset_output  # Values are 0 or 1
        output_dict['onset_shift_output'] = onset_shift_output

        # Calculate binarized offset output from regression output
        (offset_output, offset_shift_output) = \
            self.get_binarized_output_from_regression(
                reg_output=output_dict['reg_offset_output'],
                threshold=self.offset_threshold, neighbour=4)

        output_dict['offset_output'] = offset_output  # Values are 0 or 1
        output_dict['offset_shift_output'] = offset_shift_output

        if 'reg_pedal_onset_output' in output_dict.keys():
            """Pedal onsets are not used in inference. Instead, frame-wise pedal
            predictions are used to detect onsets. We empirically found this is 
            more accurate to detect pedal onsets."""
            pass

        if 'reg_pedal_offset_output' in output_dict.keys():
            # Calculate binarized pedal offset output from regression output
            (pedal_offset_output, pedal_offset_shift_output) = \
                self.get_binarized_output_from_regression(
                    reg_output=output_dict['reg_pedal_offset_output'],
                    threshold=self.pedal_offset_threshold, neighbour=4)

            output_dict['pedal_offset_output'] = pedal_offset_output  # Values are 0 or 1
            output_dict['pedal_offset_shift_output'] = pedal_offset_shift_output

        # ------ 2. Process matrices results to event results ------
        # Detect piano notes from output_dict
        est_on_off_note_vels = self.output_dict_to_detected_notes(output_dict)

        est_pedal_on_offs = None

        return est_on_off_note_vels, est_pedal_on_offs

    def get_binarized_output_from_regression(self, reg_output, threshold, neighbour):
        """Calculate binarized output and shifts of onsets or offsets from the
        regression results.

        Args:
          reg_output: (frames_num, classes_num)
          threshold: float
          neighbour: int

        Returns:
          binary_output: (frames_num, classes_num)
          shift_output: (frames_num, classes_num)
        """
        binary_output = np.zeros_like(reg_output)
        shift_output = np.zeros_like(reg_output)
        (frames_num, classes_num) = reg_output.shape

        for k in range(classes_num):
            x = reg_output[:, k]
            for n in range(neighbour, frames_num - neighbour):
                if x[n] > threshold and self.is_monotonic_neighbour(x, n, neighbour):
                    binary_output[n, k] = 1

                    """See Section III-D in [1] for deduction.
                    [1] Q. Kong, et al., High-resolution Piano Transcription 
                    with Pedals by Regressing Onsets and Offsets Times, 2020."""
                    if x[n - 1] > x[n + 1]:
                        shift = (x[n + 1] - x[n - 1]) / (x[n] - x[n + 1]) / 2
                    else:
                        shift = (x[n + 1] - x[n - 1]) / (x[n] - x[n - 1]) / 2
                    shift_output[n, k] = shift

        return binary_output, shift_output

    def is_monotonic_neighbour(self, x, n, neighbour):
        """Detect if values are monotonic in both side of x[n].

        Args:
          x: (frames_num,)
          n: int
          neighbour: int

        Returns:
          monotonic: bool
        """
        monotonic = True
        for i in range(neighbour):
            if x[n - i] < x[n - i - 1]:
                monotonic = False
            if x[n + i] < x[n + i + 1]:
                monotonic = False

        return monotonic

    def output_dict_to_detected_notes(self, output_dict):
        """Postprocess output_dict to piano notes.

        Args:
          output_dict: dict, e.g. {
            'onset_output': (frames_num, classes_num),
            'onset_shift_output': (frames_num, classes_num),
            'offset_output': (frames_num, classes_num),
            'offset_shift_output': (frames_num, classes_num),
            'frame_output': (frames_num, classes_num),
            'onset_output': (frames_num, classes_num),
            ...}

        Returns:
          est_on_off_note_vels: (notes, 4), the four columns are onsets, offsets,
          MIDI notes and velocities. E.g.,
            [[39.7375, 39.7500, 27., 0.6638],
             [11.9824, 12.5000, 33., 0.6892],
             ...]
        """

        est_tuples = []
        est_midi_notes = []
        classes_num = output_dict['frame_output'].shape[-1]

        for piano_note in range(classes_num):
            """Detect piano notes"""
            est_tuples_per_note = note_detection_with_onset_offset_regress(
                frame_output=output_dict['frame_output'][:, piano_note],
                onset_output=output_dict['onset_output'][:, piano_note],
                onset_shift_output=output_dict['onset_shift_output'][:, piano_note],
                offset_output=output_dict['offset_output'][:, piano_note],
                offset_shift_output=output_dict['offset_shift_output'][:, piano_note],
                velocity_output=output_dict['velocity_output'][:, piano_note],
                frame_threshold=self.frame_threshold)

            est_tuples += est_tuples_per_note
            est_midi_notes += [piano_note + self.begin_note] * len(est_tuples_per_note)

        est_tuples = np.array(est_tuples)  # (notes, 5)
        """(notes, 5), the five columns are onset, offset, onset_shift, 
        offset_shift and normalized_velocity"""

        est_midi_notes = np.array(est_midi_notes)  # (notes,)

        onset_times = (est_tuples[:, 0] + est_tuples[:, 2]) / self.frames_per_second
        offset_times = (est_tuples[:, 1] + est_tuples[:, 3]) / self.frames_per_second
        velocities = est_tuples[:, 4]

        est_on_off_note_vels = np.stack((onset_times, offset_times, est_midi_notes, velocities), axis=-1)
        """(notes, 3), the three columns are onset_times, offset_times and velocity."""

        est_on_off_note_vels = est_on_off_note_vels.astype(np.float32)

        return est_on_off_note_vels

    def detected_notes_to_events(self, est_on_off_note_vels):
        """Reformat detected notes to midi events.

        Args:
          est_on_off_vels: (notes, 3), the three columns are onset_times,
            offset_times and velocity. E.g.
            [[32.8376, 35.7700, 0.7932],
             [37.3712, 39.9300, 0.8058],
             ...]

        Returns:
          midi_events, list, e.g.,
            [{'onset_time': 39.7376, 'offset_time': 39.75, 'midi_note': 27, 'velocity': 84},
             {'onset_time': 11.9824, 'offset_time': 12.50, 'midi_note': 33, 'velocity': 88},
             ...]
        """
        midi_events = []
        for i in range(est_on_off_note_vels.shape[0]):
            midi_events.append({
                'onset_time': est_on_off_note_vels[i][0],
                'offset_time': est_on_off_note_vels[i][1],
                'midi_note': int(est_on_off_note_vels[i][2]),
                'velocity': int(est_on_off_note_vels[i][3] * self.velocity_scale)})

        return midi_events