File size: 7,400 Bytes
e72f2a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from collections import defaultdict
from typing import DefaultDict, Dict, List, Optional, Tuple
import pretty_midi
import numpy as np
from musc.postprocessing import RegressionPostProcessor, spotify_create_notes
from musc.pitch_estimator import PitchEstimator


class Transcriber(PitchEstimator):
    def __init__(self, labeling, instrument='Violin', sr=16000, window_size=1024, hop_length=160):
        super().__init__(labeling, instrument=instrument, sr=sr, window_size=window_size, hop_length=hop_length)

    def transcribe(self, audio, batch_size=128, postprocessing='spotify', include_pitch_bends=True, to_midi=True,
                   debug=False):
        """
        Transcribe an audio file or mono waveform in numpy or torch into MIDI with pitch bends.
        :param audio: str, pathlib.Path, np.ndarray, or torch.Tensor
        :param batch_size: frames to process at once
        :param postprocessing: note creation method. 'spotify'(default) or 'tiktok'
        :param include_pitch_bends: whether to include pitch bends in the MIDI file
        :param to_midi: whether to return a MIDI file or a list of note events (as tuple)
        :return: transcribed MIDI file as a pretty_midi.PrettyMIDI object
        """
        out = self.predict(audio, batch_size)
        if debug:
            import matplotlib.pyplot as plt
            plt.imshow(out['f0'].T, aspect='auto', origin='lower')
            plt.show()
            plt.imshow(out['note'].T, aspect='auto', origin='lower')
            plt.show()

            plt.imshow(out['onset'].T, aspect='auto', origin='lower')
            plt.show()

            plt.imshow(out['offset'].T, aspect='auto', origin='lower')
            plt.show()

        if to_midi:
            return self.out2midi(out, postprocessing, include_pitch_bends)
        else:
            return self.out2note(out, postprocessing, include_pitch_bends)



    def out2note(self, output: Dict[str, np.array], postprocessing='spotify',
                 include_pitch_bends: bool = True,
    ) -> List[Tuple[float, float, int, float, Optional[List[int]]]]:
        """Convert model output to notes
        """
        if postprocessing == 'spotify':
            estimated_notes = spotify_create_notes(
                output["note"],
                output["onset"],
                note_low=self.labeling.midi_centers[0],
                note_high=self.labeling.midi_centers[-1],
                onset_thresh=0.5,
                frame_thresh=0.3,
                infer_onsets=True,
                min_note_len=int(np.round(127.70 / 1000 * (self.sr / self.hop_length))), #127.70
                melodia_trick=True,
            )
        
        if postprocessing == 'rebab':
            estimated_notes = spotify_create_notes(
                output["note"],
                output["onset"],
                note_low=self.labeling.midi_centers[0],
                note_high=self.labeling.midi_centers[-1],
                onset_thresh=0.2,
                frame_thresh=0.2,
                infer_onsets=True,
                min_note_len=int(np.round(127.70 / 1000 * (self.sr / self.hop_length))), #127.70
                melodia_trick=True,
            )
        
        
        elif postprocessing == 'tiktok':
            postprocessor = RegressionPostProcessor(
                frames_per_second=self.sr / self.hop_length,
                classes_num=self.labeling.midi_centers.shape[0],
                begin_note=self.labeling.midi_centers[0],
                onset_threshold=0.2,
                offset_threshold=0.2,
                frame_threshold=0.3,
                pedal_offset_threshold=0.5,
            )
            tiktok_note_dict, _ = postprocessor.output_dict_to_midi_events(output)
            estimated_notes = []
            for list_item in tiktok_note_dict:
                if list_item['offset_time'] > 0.6 + list_item['onset_time']:
                    estimated_notes.append((int(np.floor(list_item['onset_time']/(output['time'][1]))),
                                            int(np.ceil(list_item['offset_time']/(output['time'][1]))),
                                            list_item['midi_note'], list_item['velocity']/128))
        if include_pitch_bends:
            estimated_notes_with_pitch_bend = self.get_pitch_bends(output["f0"], estimated_notes)
        else:
            estimated_notes_with_pitch_bend = [(note[0], note[1], note[2], note[3], None) for note in estimated_notes]

        times_s = output['time']
        estimated_notes_time_seconds = [
            (times_s[note[0]], times_s[note[1]], note[2], note[3], note[4]) for note in estimated_notes_with_pitch_bend
        ]

        return estimated_notes_time_seconds


    def out2midi(self, output: Dict[str, np.array], postprocessing: str = 'spotify', include_pitch_bends: bool = True,
    ) -> pretty_midi.PrettyMIDI:
        """Convert model output to MIDI
        Args:
            output: A dictionary with shape
                {
                    'frame': array of shape (n_times, n_freqs),
                    'onset': array of shape (n_times, n_freqs),
                    'contour': array of shape (n_times, 3*n_freqs)
                }
                representing the output of the basic pitch model.
            postprocessing: spotify or tiktok postprocessing.
            include_pitch_bends: If True, include pitch bends.
        Returns:
            note_events: A list of note event tuples (start_time_s, end_time_s, pitch_midi, amplitude)
        """
        estimated_notes_time_seconds = self.out2note(output, postprocessing, include_pitch_bends)
        midi_tempo = 120  # todo: infer tempo from the onsets
        return self.note2midi(estimated_notes_time_seconds, midi_tempo)


    def note2midi(
            self, note_events_with_pitch_bends: List[Tuple[float, float, int, float, Optional[List[int]]]],
            midi_tempo: float = 120,
    ) -> pretty_midi.PrettyMIDI:
        """Create a pretty_midi object from note events
            :param note_events_with_pitch_bends: list of tuples
                    [(start_time_seconds, end_time_seconds, pitch_midi, amplitude)]
            :param midi_tempo: #todo: infer tempo from the onsets
            :return: transcribed MIDI file as a pretty_midi.PrettyMIDI object
        """
        mid = pretty_midi.PrettyMIDI(initial_tempo=midi_tempo)

        program = pretty_midi.instrument_name_to_program(self.instrument)
        instruments: DefaultDict[int, pretty_midi.Instrument] = defaultdict(
            lambda: pretty_midi.Instrument(program=program)
        )
        for start_time, end_time, note_number, amplitude, pitch_bend in note_events_with_pitch_bends:
            instrument = instruments[note_number]
            note = pretty_midi.Note(
                velocity=int(np.round(127 * amplitude)),
                pitch=note_number,
                start=start_time,
                end=end_time,
            )
            instrument.notes.append(note)
            if not isinstance(pitch_bend, np.ndarray):
                continue
            pitch_bend_times = np.linspace(start_time, end_time, len(pitch_bend))

            for pb_time, pb_midi in zip(pitch_bend_times, pitch_bend):
                instrument.pitch_bends.append(pretty_midi.PitchBend(pb_midi, pb_time))

        mid.instruments.extend(instruments.values())

        return mid