Spaces:
Sleeping
Sleeping
import os | |
os.system("pip install torch transformers gradio matplotlib") | |
import torch | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
torch.set_num_threads(torch.get_num_threads()) | |
# Load the trained model and tokenizer from Hugging Face Hub | |
model_path = "HyperX-Sentience/RogueBERT-Toxicity-85K" | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
# Move the model to CUDA if available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Define toxicity labels | |
labels = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] | |
def predict_toxicity(comment): | |
"""Predicts the toxicity levels of a given comment.""" | |
inputs = tokenizer(comment, truncation=True, padding="max_length", max_length=128, return_tensors="pt") | |
inputs = {key: val.to(device) for key, val in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.sigmoid(outputs.logits).cpu().numpy()[0] | |
return {labels[i]: float(probabilities[i]) for i in range(len(labels))} | |
import pandas as pd | |
def format_toxicity_data(comment): | |
"""Formats the toxicity scores for a modern bar graph.""" | |
scores = predict_toxicity(comment) | |
df = pd.DataFrame(list(scores.items()), columns=["Category", "Score"]) | |
return df | |
# Gradio interface | |
demo = gr.Interface( | |
fn=format_toxicity_data, | |
inputs=gr.Textbox(label="Enter a comment:"), | |
outputs=gr.BarPlot( | |
x="Category", | |
y="Score", | |
title="Toxicity Analysis", | |
y_lim=[0, 1], | |
color="blue", | |
label="Toxicity Scores", | |
interactive=False | |
), | |
title="Toxicity Detection with RogueBERT", | |
description="Enter a comment to analyze its toxicity levels. The results will be displayed as a modern bar chart." | |
) | |
demo.launch() | |