import torch import gradio as gr import numpy as np import matplotlib.pyplot as plt from transformers import AutoTokenizer, AutoModelForSequenceClassification torch.set_num_threads(torch.get_num_threads()) # Load the trained model and tokenizer from Hugging Face Hub model_path = "HyperX-Sentience/RogueBERT-Toxicity-85K" model = AutoModelForSequenceClassification.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) # Move the model to CUDA if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Define toxicity labels labels = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] def predict_toxicity(comment): """Predicts the toxicity levels of a given comment.""" inputs = tokenizer(comment, truncation=True, padding="max_length", max_length=128, return_tensors="pt") inputs = {key: val.to(device) for key, val in inputs.items()} with torch.no_grad(): outputs = model(**inputs) probabilities = torch.sigmoid(outputs.logits).cpu().numpy()[0] return {labels[i]: float(probabilities[i]) for i in range(len(labels))} def visualize_toxicity(comment): """Generates a bar chart showing toxicity levels.""" scores = predict_toxicity(comment) # Create bar chart plt.figure(figsize=(6, 4)) plt.bar(scores.keys(), scores.values(), color=['blue', 'red', 'green', 'purple', 'orange', 'brown']) plt.ylim(0, 1) plt.ylabel("Toxicity Score") plt.title("Toxicity Analysis") plt.xticks(rotation=45) plt.grid(axis='y', linestyle='--', alpha=0.7) # Save plot to display in Gradio plt.savefig("toxicity_plot.png") plt.close() return "toxicity_plot.png" # Gradio interface demo = gr.Interface( fn=visualize_toxicity, inputs=gr.Textbox(label="Enter a comment:"), outputs=gr.Image(type="file", label="Toxicity Scores"), title="Toxicity Detection with RogueBERT", description="Enter a comment to analyze its toxicity levels. The results will be displayed as a bar chart." ) demo.launch()