AbdullaShafeeg commited on
Commit
63beaa0
·
1 Parent(s): e2496fa
Files changed (1) hide show
  1. app.py +15 -8
app.py CHANGED
@@ -4,14 +4,14 @@ import matplotlib.pyplot as plt
4
  import sounddevice as sd
5
  import numpy as np
6
  import pandas as pd
7
- # import torch
8
- # import torchaudio
9
  import wave
10
  import io
11
  from scipy.io import wavfile
12
  # MODEL LOADING and INITIALISATION
13
- # model = torch.jit.load("snorenetv1_small.ptl")
14
- # model.eval()
15
 
16
  # Session state
17
  if 'text' not in st.session_state:
@@ -53,7 +53,6 @@ with st.expander('About this App'):
53
 
54
  wav_audio_data = st_audiorec()
55
  if wav_audio_data is not None:
56
-
57
  data = np.frombuffer(wav_audio_data, dtype=np.int16)
58
  st.write(len(data))
59
  duration = len(data)//110000
@@ -65,7 +64,7 @@ if wav_audio_data is not None:
65
  scaled_data = np_array.astype(np.int16).tobytes()
66
  with io.BytesIO() as fp, wave.open(fp, mode="wb") as waveobj:
67
  waveobj.setnchannels(1)
68
- waveobj.setframerate(sample_rate)
69
  waveobj.setsampwidth(2)
70
  waveobj.setcomptype("NONE", "NONE")
71
  waveobj.writeframes(scaled_data)
@@ -73,8 +72,16 @@ if wav_audio_data is not None:
73
 
74
  with open("output.wav", 'wb') as wav_file:
75
  wav_file.write(wav_make)
76
- st.audio("output.wav" , format="audio/wav")
77
- # st.audio(loaded_waveform, "audio/wav")
 
 
 
 
 
 
 
 
78
  # PERCENTAGE OF SNORING PLOT
79
 
80
 
 
4
  import sounddevice as sd
5
  import numpy as np
6
  import pandas as pd
7
+ import torch
8
+ import torchaudio
9
  import wave
10
  import io
11
  from scipy.io import wavfile
12
  # MODEL LOADING and INITIALISATION
13
+ model = torch.jit.load("snorenetv1_small.ptl")
14
+ model.eval()
15
 
16
  # Session state
17
  if 'text' not in st.session_state:
 
53
 
54
  wav_audio_data = st_audiorec()
55
  if wav_audio_data is not None:
 
56
  data = np.frombuffer(wav_audio_data, dtype=np.int16)
57
  st.write(len(data))
58
  duration = len(data)//110000
 
64
  scaled_data = np_array.astype(np.int16).tobytes()
65
  with io.BytesIO() as fp, wave.open(fp, mode="wb") as waveobj:
66
  waveobj.setnchannels(1)
67
+ waveobj.setframerate(96000)
68
  waveobj.setsampwidth(2)
69
  waveobj.setcomptype("NONE", "NONE")
70
  waveobj.writeframes(scaled_data)
 
72
 
73
  with open("output.wav", 'wb') as wav_file:
74
  wav_file.write(wav_make)
75
+ sr, waveform = wavfile.read('output.wav')
76
+ input_tensor = torch.tensor(waveform[:16000]).unsqueeze(0).to(torch.float32)
77
+ st.write(input_tensor.shape)
78
+ result = model(input_tensor)
79
+ if np.abs(result[0][0]) > np.abs(result[0][1]):
80
+ st.write("NON_SNORING")
81
+ else:
82
+ st.write("SNORING")
83
+
84
+
85
  # PERCENTAGE OF SNORING PLOT
86
 
87