HypermindLabs commited on
Commit
8583d6e
·
1 Parent(s): 8f954b0
Files changed (1) hide show
  1. app.py +4 -27
app.py CHANGED
@@ -22,7 +22,6 @@ import torchaudio.transforms as T
22
  n_fft = 1024
23
  win_length = None
24
  hop_length = 32
25
-
26
  # Input tensor shape was ([1,16000])
27
  class SnoreNet(nn.Module):
28
  def __init__(self):
@@ -43,12 +42,9 @@ class SnoreNet(nn.Module):
43
  output = self.fc2(output)
44
  output = torch.abs(self.logs1(output))
45
  return output
46
-
47
  model = SnoreNet()
48
  model.load_state_dict(torch.load('snoreNetv1.pt'))
49
  model.eval()
50
-
51
-
52
  # Audio parameters
53
  def process_data(waveform_chunks):
54
  snore = 0
@@ -64,7 +60,6 @@ def process_data(waveform_chunks):
64
  else:
65
  snore += 1
66
  return snore, other
67
-
68
  st.sidebar.markdown(
69
  """
70
  <div align="justify">
@@ -77,7 +72,6 @@ st.sidebar.markdown(
77
  unsafe_allow_html=True,
78
  )
79
  st.title('Real-Time Snore Detection App 😴')
80
-
81
  uploaded_file = st.file_uploader("Upload Sample", type=["wav"])
82
  if uploaded_file is not None:
83
  st.write("Analsysing...")
@@ -87,34 +81,17 @@ if uploaded_file is not None:
87
  num_chunks = len(audio_array) // chunk_size
88
  waveform_chunks = np.array_split(audio_array[:num_chunks * chunk_size], num_chunks)
89
  snore, other = process_data(waveform_chunks)
90
-
91
  total = snore + other
92
  snore_percentage = (snore / total) * 100
93
  other_percentage = (other / total) * 100
94
-
95
- categories = ["Snore", "Other"]
96
- percentages = [snore_percentage, other_percentage]
97
-
98
- st.write(f'Snore Percentage: {snore_percentage}')
99
  plt.figure(figsize=(8, 4))
100
- plt.barh(categories, percentages, color=['#ff0033', '#00ffee'])
101
  plt.xlabel('Percentage')
102
  plt.title('Percentage of Snoring')
103
  plt.xlim(0, 100)
104
-
105
  for i, percentage in enumerate(percentages):
106
  plt.text(percentage, i, f' {percentage:.2f}%', va='center')
107
  st.write("DONE")
108
- st.pyplot(plt)
109
-
110
-
111
- # # PERCENTAGE OF SNORING PLOT
112
-
113
-
114
-
115
-
116
-
117
-
118
-
119
-
120
-
 
22
  n_fft = 1024
23
  win_length = None
24
  hop_length = 32
 
25
  # Input tensor shape was ([1,16000])
26
  class SnoreNet(nn.Module):
27
  def __init__(self):
 
42
  output = self.fc2(output)
43
  output = torch.abs(self.logs1(output))
44
  return output
 
45
  model = SnoreNet()
46
  model.load_state_dict(torch.load('snoreNetv1.pt'))
47
  model.eval()
 
 
48
  # Audio parameters
49
  def process_data(waveform_chunks):
50
  snore = 0
 
60
  else:
61
  snore += 1
62
  return snore, other
 
63
  st.sidebar.markdown(
64
  """
65
  <div align="justify">
 
72
  unsafe_allow_html=True,
73
  )
74
  st.title('Real-Time Snore Detection App 😴')
 
75
  uploaded_file = st.file_uploader("Upload Sample", type=["wav"])
76
  if uploaded_file is not None:
77
  st.write("Analsysing...")
 
81
  num_chunks = len(audio_array) // chunk_size
82
  waveform_chunks = np.array_split(audio_array[:num_chunks * chunk_size], num_chunks)
83
  snore, other = process_data(waveform_chunks)
 
84
  total = snore + other
85
  snore_percentage = (snore / total) * 100
86
  other_percentage = (other / total) * 100
87
+ categories = ["Snore"]
88
+ percentages = [snore_percentage]
 
 
 
89
  plt.figure(figsize=(8, 4))
90
+ plt.barh(categories, percentages, color=['#ff0033'])
91
  plt.xlabel('Percentage')
92
  plt.title('Percentage of Snoring')
93
  plt.xlim(0, 100)
 
94
  for i, percentage in enumerate(percentages):
95
  plt.text(percentage, i, f' {percentage:.2f}%', va='center')
96
  st.write("DONE")
97
+ st.pyplot(plt)