HyperMind-Labs commited on
Commit
b2a4dc4
·
1 Parent(s): 2bc35ab
Files changed (1) hide show
  1. app.py +7 -19
app.py CHANGED
@@ -6,6 +6,7 @@ import numpy as np
6
  import pandas as pd
7
  import torch
8
  import torchaudio
 
9
 
10
  # MODEL LOADING and INITIALISATION
11
  # model = torch.jit.load("snorenetv1_small.ptl")
@@ -51,25 +52,12 @@ with st.expander('About this App'):
51
 
52
  wav_audio_data = st_audiorec()
53
  if wav_audio_data is not None:
54
- # np_wav = np.frombuffer(wav_audio_data, dtype=np.int16)
55
- # num_segments = len(np_wav)//100000
56
- # segments_list = []
57
- # for i in range(num_segments):
58
- # start_sample = i * 100000
59
- # end_sample = (i + 1) * 100000
60
- # segment = np_wav[start_sample:end_sample]
61
- # segments_list.append(segment)
62
-
63
- # wav_tensor = torch.tensor(np_wav, dtype=torch.float32)
64
- # segment_samples = int(44100 * 1)
65
- # num_segments = len(wav_tensor) // segment_samples
66
- # segments_list = []
67
- # for i in range(num_segments):
68
- # start_sample = i * segment_samples
69
- # end_sample = (i + 1) * segment_samples
70
- # segment = wav_tensor[start_sample:end_sample]
71
- # segments_list.append(segment)
72
- st.write(type(wav_audio_data))
73
  # PERCENTAGE OF SNORING PLOT
74
 
75
 
 
6
  import pandas as pd
7
  import torch
8
  import torchaudio
9
+ from scipy.io import wavfile
10
 
11
  # MODEL LOADING and INITIALISATION
12
  # model = torch.jit.load("snorenetv1_small.ptl")
 
52
 
53
  wav_audio_data = st_audiorec()
54
  if wav_audio_data is not None:
55
+ output_filename = "audio_data.wav"
56
+ audio_data_bytes = wav_audio_data.decode('latin-1')
57
+ np_wav = np.frombuffer(audio_data_bytes, dtype=np.int16)
58
+ wavfile.write(output_filename, RATE, np_wav)
59
+ loaded_data = torchaudio.load("audio_data.wav")
60
+ st.write(loaded_data.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  # PERCENTAGE OF SNORING PLOT
62
 
63