Spaces:
Running
Running
File size: 5,425 Bytes
7e0376e a9e44d5 8eea10a 7e0376e 8eea10a 5a483b6 a9e44d5 8eea10a 7e0376e 23e4ec1 7e0376e 23e4ec1 7e0376e 23e4ec1 7e0376e b88f82b 7e0376e fbbd4eb 7e0376e fbbd4eb 7e0376e 8eea10a 7e0376e a9e44d5 7e0376e 8eea10a 7e0376e fbbd4eb 7e0376e fbbd4eb 8eea10a 7e0376e 78efa10 7e0376e 8eea10a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import logging
import os
import tempfile
import time
import gradio as gr
import numpy as np
import rembg
import torch
from PIL import Image
from functools import partial
from serpapi import GoogleSearch
import requests
from io import BytesIO
import matplotlib.pyplot as plt
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
# Set your SerpApi key here
SERPAPI_KEY = "YOUR_SERPAPI_KEY"
HEADER = """
**TripoSR** is a state-of-the-art open-source model for **fast** feedforward 3D reconstruction from a single image, developed in collaboration between [Tripo AI](https://www.tripo3d.ai/) and [Stability AI](https://stability.ai/).
**Tips:**
1. If you find the result is unsatisfied, please try to change the foreground ratio. It might improve the results.
2. Please disable "Remove Background" option only if your input image is RGBA with transparent background, image contents are centered and occupy more than 70% of image width or height.
"""
def get_motorcycle_image(make, model):
params = {
"api_key": SERPAPI_KEY,
"engine": "google",
"q": f"{make} {model} motorcycle product photo",
"tbm": "isch"
}
search = GoogleSearch(params)
results = search.get_dict()
if "images_results" in results:
first_image = results["images_results"][0]
image_url = first_image.get("original")
if image_url:
image_response = requests.get(image_url)
image = Image.open(BytesIO(image_response.content))
return image
else:
print("Image URL not found in results.")
return None
else:
print("No image results found.")
return None
def preprocess(input_image, do_remove_background, foreground_ratio):
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = fill_background(image)
return image
def generate(image):
scene_codes = model(image, device=device)
mesh = model.extract_mesh(scene_codes)[0]
mesh = to_gradio_3d_orientation(mesh)
mesh_path = tempfile.NamedTemporaryFile(suffix=".obj", delete=False)
mesh_path2 = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
mesh.export(mesh_path.name)
mesh.export(mesh_path2.name)
return mesh_path.name, mesh_path2.name
def run_example(make, model):
image = get_motorcycle_image(make, model)
if image:
# Save the image
input_image_path = '/content/motorcycle.jpg'
image.save(input_image_path)
# Load the image
img = Image.open(input_image_path)
output_image_path = '/content/motorcyclebg.png'
img_no_bg = rembg_remove(img)
img_no_bg.save(output_image_path)
# Preprocess and generate 3D model
preprocessed = preprocess(img_no_bg, False, 0.9)
mesh_name, mesh_name2 = generate(preprocessed)
return preprocessed, mesh_name, mesh_name2
else:
raise gr.Error("Image could not be fetched.")
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
d = os.environ.get("DEVICE", None)
if d != None:
device = d
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)
rembg_session = rembg.new_session()
with gr.Blocks() as demo:
gr.Markdown(HEADER)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
make_input = gr.Textbox(label="Motorcycle Make", placeholder="Enter motorcycle make")
model_input = gr.Textbox(label="Motorcycle Model", placeholder="Enter motorcycle model")
processed_image = gr.Image(label="Processed Image", interactive=False)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=True
)
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05,
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Column():
with gr.Tab("obj"):
output_model = gr.Model3D(
label="Output Model",
interactive=False,
)
with gr.Tab("glb"):
output_model2 = gr.Model3D(
label="Output Model",
interactive=False,
)
submit.click(fn=run_example, inputs=[make_input, model_input], outputs=[processed_image, output_model, output_model2])
demo.queue(max_size=10)
demo.launch()
|