File size: 5,425 Bytes
7e0376e
 
 
 
 
 
 
 
 
 
a9e44d5
8eea10a
 
 
 
7e0376e
 
 
 
8eea10a
 
5a483b6
a9e44d5
 
 
 
 
 
 
 
8eea10a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e0376e
23e4ec1
7e0376e
 
 
 
 
 
 
23e4ec1
 
7e0376e
 
 
23e4ec1
7e0376e
 
 
 
 
 
 
b88f82b
7e0376e
fbbd4eb
7e0376e
fbbd4eb
 
7e0376e
8eea10a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e0376e
 
a9e44d5
7e0376e
 
 
8eea10a
 
7e0376e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbd4eb
7e0376e
 
 
 
fbbd4eb
 
 
 
 
8eea10a
7e0376e
78efa10
7e0376e
8eea10a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import logging
import os
import tempfile
import time

import gradio as gr
import numpy as np
import rembg
import torch
from PIL import Image
from functools import partial
from serpapi import GoogleSearch
import requests
from io import BytesIO
import matplotlib.pyplot as plt

from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation

# Set your SerpApi key here
SERPAPI_KEY = "YOUR_SERPAPI_KEY"

HEADER = """
**TripoSR** is a state-of-the-art open-source model for **fast** feedforward 3D reconstruction from a single image, developed in collaboration between [Tripo AI](https://www.tripo3d.ai/) and [Stability AI](https://stability.ai/).

**Tips:**
1. If you find the result is unsatisfied, please try to change the foreground ratio. It might improve the results.
2. Please disable "Remove Background" option only if your input image is RGBA with transparent background, image contents are centered and occupy more than 70% of image width or height.
"""

def get_motorcycle_image(make, model):
    params = {
        "api_key": SERPAPI_KEY,
        "engine": "google",
        "q": f"{make} {model} motorcycle product photo",
        "tbm": "isch"
    }

    search = GoogleSearch(params)
    results = search.get_dict()
    if "images_results" in results:
        first_image = results["images_results"][0]
        image_url = first_image.get("original")
        if image_url:
            image_response = requests.get(image_url)
            image = Image.open(BytesIO(image_response.content))
            return image
        else:
            print("Image URL not found in results.")
            return None
    else:
        print("No image results found.")
        return None

def preprocess(input_image, do_remove_background, foreground_ratio):
    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image

    if do_remove_background:
        image = input_image.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = input_image
        if image.mode == "RGBA":
            image = fill_background(image)
    return image

def generate(image):
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes)[0]
    mesh = to_gradio_3d_orientation(mesh)
    mesh_path = tempfile.NamedTemporaryFile(suffix=".obj", delete=False)
    mesh_path2 = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
    mesh.export(mesh_path.name)
    mesh.export(mesh_path2.name)
    return mesh_path.name, mesh_path2.name

def run_example(make, model):
    image = get_motorcycle_image(make, model)
    if image:
        # Save the image
        input_image_path = '/content/motorcycle.jpg'
        image.save(input_image_path)

        # Load the image
        img = Image.open(input_image_path)
        output_image_path = '/content/motorcyclebg.png'
        img_no_bg = rembg_remove(img)
        img_no_bg.save(output_image_path)

        # Preprocess and generate 3D model
        preprocessed = preprocess(img_no_bg, False, 0.9)
        mesh_name, mesh_name2 = generate(preprocessed)
        return preprocessed, mesh_name, mesh_name2
    else:
        raise gr.Error("Image could not be fetched.")

if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

d = os.environ.get("DEVICE", None)
if d != None:
    device = d 

model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)

rembg_session = rembg.new_session()

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                make_input = gr.Textbox(label="Motorcycle Make", placeholder="Enter motorcycle make")
                model_input = gr.Textbox(label="Motorcycle Model", placeholder="Enter motorcycle model")
                processed_image = gr.Image(label="Processed Image", interactive=False)
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    foreground_ratio = gr.Slider(
                        label="Foreground Ratio",
                        minimum=0.5,
                        maximum=1.0,
                        value=0.85,
                        step=0.05,
                    )
            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")
        with gr.Column():
            with gr.Tab("obj"):
                output_model = gr.Model3D(
                    label="Output Model",
                    interactive=False,
                )
            with gr.Tab("glb"):
                output_model2 = gr.Model3D(
                    label="Output Model",
                    interactive=False,
                )
    submit.click(fn=run_example, inputs=[make_input, model_input], outputs=[processed_image, output_model, output_model2])

demo.queue(max_size=10)
demo.launch()