Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import openai
|
4 |
+
import faiss
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
from PyPDF2 import PdfReader
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
app.add_middleware(
|
16 |
+
CORSMiddleware,
|
17 |
+
allow_origins=["*"],
|
18 |
+
allow_credentials=True,
|
19 |
+
allow_methods=["*"],
|
20 |
+
allow_headers=["*"],
|
21 |
+
)
|
22 |
+
|
23 |
+
notebooks = {}
|
24 |
+
|
25 |
+
class Query(BaseModel):
|
26 |
+
question: str
|
27 |
+
notebook_id: str
|
28 |
+
|
29 |
+
@app.post("/ask")
|
30 |
+
def ask(query: Query):
|
31 |
+
nb = notebooks.get(query.notebook_id)
|
32 |
+
if not nb:
|
33 |
+
return {"answer": "Notebook not found."}
|
34 |
+
question_embedding = openai.Embedding.create(
|
35 |
+
input=[query.question],
|
36 |
+
model="text-embedding-ada-002"
|
37 |
+
)["data"][0]["embedding"]
|
38 |
+
if len(nb["texts"]) == 0:
|
39 |
+
return {"answer": "No documents indexed in this notebook."}
|
40 |
+
D, I = nb["index"].search(np.array([question_embedding]).astype("float32"), k=3)
|
41 |
+
context = "\n\n".join([f"[{i+1}] {nb['texts'][i]}" for i in I[0]])
|
42 |
+
citation_refs = [nb['citations'][i] for i in I[0]]
|
43 |
+
response = openai.ChatCompletion.create(
|
44 |
+
model="gpt-4",
|
45 |
+
messages=[
|
46 |
+
{"role": "system", "content": "You are an AI assistant that answers based on uploaded documents. Cite sources using [1], [2], etc."},
|
47 |
+
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query.question}"}
|
48 |
+
],
|
49 |
+
temperature=0.3
|
50 |
+
)
|
51 |
+
return {"answer": response.choices[0].message.content.strip(), "citations": citation_refs}
|
52 |
+
|
53 |
+
@app.post("/upload-pdf")
|
54 |
+
def upload_pdf(notebook_id: str = Form(...), file: UploadFile = File(...)):
|
55 |
+
if notebook_id not in notebooks:
|
56 |
+
notebooks[notebook_id] = {"index": faiss.IndexFlatL2(1536), "texts": [], "citations": []}
|
57 |
+
nb = notebooks[notebook_id]
|
58 |
+
reader = PdfReader(file.file)
|
59 |
+
for i, page in enumerate(reader.pages):
|
60 |
+
content = page.extract_text()
|
61 |
+
if content:
|
62 |
+
embedding = openai.Embedding.create(input=[content], model="text-embedding-ada-002")["data"][0]["embedding"]
|
63 |
+
nb["index"].add(np.array([embedding]).astype("float32"))
|
64 |
+
nb["texts"].append(content)
|
65 |
+
nb["citations"].append(f"{file.filename}, page {i+1}")
|
66 |
+
return {"status": f"{file.filename} uploaded and parsed"}
|