File size: 6,790 Bytes
4060393
 
272755a
13d1927
4ac7ca7
de67278
cfe3a26
60685da
4060393
4ac7ca7
13d1927
4060393
4ac7ca7
13d1927
 
4060393
 
 
13d1927
4060393
b320475
4060393
 
 
13d1927
4060393
 
13d1927
4060393
 
 
 
 
2b8b374
 
 
 
 
4060393
 
 
 
 
 
13d1927
4ac7ca7
 
272755a
 
13d1927
 
 
272755a
 
 
13d1927
 
 
 
 
 
4060393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac7ca7
 
 
cfe3a26
de67278
 
cfe3a26
3ee6389
 
 
cfe3a26
de67278
 
cfe3a26
 
 
 
13d1927
 
de67278
cfe3a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b5f49
13d1927
 
de67278
cfe3a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b5f49
 
 
 
 
 
 
 
 
 
de67278
 
 
 
 
 
 
 
 
 
 
 
4ac7ca7
4060393
b320475
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import streamlit as st
import time
import PyPDF2  # Import PyPDF2 for PDF text extraction
from openai import OpenAI
from docx import Document
from docx.shared import Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
import os

# Set the page configuration
st.set_page_config(page_title="Report Generation AI")

# Title and caption
st.title("AI Report Generator")
st.caption("Generate Professional Reports from PDF Documents")

# Sidebar for API Key input
with st.sidebar:
    OPENAI_API_KEY = st.text_input("Enter your Access Key", type="password")

# Check for valid API key
if OPENAI_API_KEY:
    client = OpenAI(api_key=OPENAI_API_KEY)
else:
    st.error("Please enter your Access Key to continue.")
    st.stop()

ASSISTANT_ID = "asst_d68xqxiRtvYkmewBPugwZaGx"

# Initialize session state for chat history
if "messages" not in st.session_state:
    st.session_state["messages"] = []

# Clear chat button above chat input
if st.button("Clear Chat", use_container_width=True):
    st.session_state.messages = []
    st.rerun()

# Display chat history
for message in st.session_state.messages:
    role, content = message["role"], message["content"]
    st.chat_message(role).write(content)

# Process user input
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])

if uploaded_file:
    # Read the PDF file using PyPDF2
    pdf_reader = PyPDF2.PdfReader(uploaded_file)
    full_text = ""
    
    # Extract text from each page
    for page_num in range(len(pdf_reader.pages)):
        page = pdf_reader.pages[page_num]
        full_text += page.extract_text()

    st.write("Text extracted from PDF:")
    st.text_area("Extracted Text", full_text, height=300)

    # Process user input for assistant
    prompt = f"Please analyze the following text from the PDF: {full_text[:1000]}"  # Limit to the first 1000 chars for clarity
    st.session_state.messages.append({"role": "user", "content": prompt})
    st.chat_message("user").write(prompt)

    try:
        # Create a new thread for conversation
        thread = client.beta.threads.create()
        thread_id = thread.id

        # Send user message to OpenAI API
        client.beta.threads.messages.create(
            thread_id=thread_id,
            role="user",
            content=prompt
        )

        # Run the assistant to generate a response
        run = client.beta.threads.runs.create(
            thread_id=thread_id,
            assistant_id=ASSISTANT_ID
        )

        # Wait for response
        while True:
            run_status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
            if run_status.status == "completed":
                break
            time.sleep(1)

        # Retrieve assistant response
        messages = client.beta.threads.messages.list(thread_id=thread_id)
        assistant_message = messages.data[0].content[0].text.value

        # Display assistant's response
        st.chat_message("assistant").write(assistant_message)

        # Store in session state
        st.session_state.messages.append({"role": "assistant", "content": assistant_message})

        # Generate Word (DOCX) file for download
        doc = Document()

        # Add a title and style
        title = doc.add_heading('AI Assistant Report', 0)
        title.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER  # Center align the title
        run = title.add_run("AI Assistant Report")
        run.bold = True
        run.font.size = Pt(18)

        # Add Executive Summary
        doc.add_heading('Executive Summary', level=1)
        doc.add_paragraph("Based on the provided PDF content, the analysis has been carried out. "
                          "Key insights and analysis are provided below, along with a variance analysis "
                          "and considerations for future actions.")

        # Step 1: Text Analysis
        doc.add_heading('Step 1: Text Analysis', level=1)
        
        # Create a table for the extracted data
        table = doc.add_table(rows=1, cols=6)
        hdr_cells = table.rows[0].cells
        hdr_cells[0].text = 'Sales (2025)'
        hdr_cells[1].text = 'Sales (2024)'
        hdr_cells[2].text = 'Sales Variance (%)'
        hdr_cells[3].text = 'Gross Profit (2025)'
        hdr_cells[4].text = 'Gross Profit (2024)'
        hdr_cells[5].text = 'Gross Profit Variance (%)'

        # Add sample row data (the actual data should be dynamically inserted here from the PDF)
        row = table.add_row().cells
        row[0].text = "1,392"
        row[1].text = "1,400"
        row[2].text = "-0.5"
        row[3].text = "200"
        row[4].text = "207"
        row[5].text = "-3.0"

        # Step 2: Assistant's Analysis
        doc.add_heading('Step 2: Assistant Analysis', level=1)
        doc.add_paragraph(f"The AI Assistant's insights are:\n{assistant_message}")
        
        # Add tables for key insights like sales, gross profit, and variance analysis
        doc.add_heading('Key Insights and Trends', level=2)
        doc.add_paragraph("Here is a summary of the analysis based on the provided data:")

        # Add another table for detailed analysis if necessary
        detailed_table = doc.add_table(rows=1, cols=3)
        detailed_hdr = detailed_table.rows[0].cells
        detailed_hdr[0].text = 'Month'
        detailed_hdr[1].text = 'Sales (ZAR)'
        detailed_hdr[2].text = 'Gross Profit (ZAR)'

        # Add sample data for detailed insights
        month_data = [
            ("February 2025", "1,392,000", "200,000"),
            ("February 2024", "1,400,000", "207,000"),
            ("Budgeted February 2025", "1,498,000", "221,000")
        ]

        for month, sales, profit in month_data:
            row = detailed_table.add_row().cells
            row[0].text = month
            row[1].text = sales
            row[2].text = profit

        # Style Table Text (bold for headings, adjust font size)
        for cell in hdr_cells:
            cell.paragraphs[0].runs[0].bold = True
            cell.paragraphs[0].runs[0].font.size = Pt(10.5)
        
        # Adjust font size and add bold to data cells
        for row in table.rows:
            for cell in row.cells:
                cell.paragraphs[0].runs[0].font.size = Pt(10.5)

        # Saving the DOCX file
        word_filename = "AI_Report_Formatted.docx"
        doc.save(word_filename)

        # Provide download link
        with open(word_filename, "rb") as file:
            st.download_button(
                label="Download the Report",
                data=file.read(),
                file_name=word_filename,
                mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
            )

    except Exception as e:
        st.error(f"Error processing the chat: {str(e)}")