File size: 4,918 Bytes
ead511a
 
fd85cd0
e35dc50
 
 
 
 
 
 
ead511a
528891b
ead511a
528891b
16a0a0c
ead511a
16a0a0c
ead511a
 
fd85cd0
16a0a0c
 
ead511a
e35dc50
 
 
16a0a0c
 
 
 
 
 
 
 
ead511a
16a0a0c
 
 
ead511a
16a0a0c
 
e35dc50
16a0a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd85cd0
16a0a0c
 
 
 
 
ead511a
16a0a0c
 
e35dc50
16a0a0c
 
 
 
 
 
e35dc50
16a0a0c
 
 
 
 
e35dc50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st
from openai import OpenAI
import time
import os
import re
import pandas as pd
import PyPDF2
from datetime import datetime
from pydub import AudioSegment
from docx import Document

st.set_page_config(page_title="Schlager ContractAi")

st.title("Schlager ContractAi")
st.caption("Chat with your contract or manage meeting minutes")

# Sidebar for API Key input
with st.sidebar:
    OPENAI_API_KEY = st.text_input("Enter your OpenAI API Key", type="password")

# Tabs for Contract and Minutes
tab1, tab2 = st.tabs(["Contract", "Minutes"])

SUPPORTED_AUDIO_FORMATS = (".mp3", ".wav", ".m4a")
SUPPORTED_TEXT_FORMATS = (".txt", ".docx", ".csv", ".xlsx", ".pdf")

with tab1:
    st.subheader("Contract Chat")
    
    if OPENAI_API_KEY:
        client = OpenAI(api_key=OPENAI_API_KEY)
    else:
        st.error("Please enter your OpenAI API key to continue.")
        st.stop()

    ASSISTANT_ID = "asst_rd9h8PfYuOmHbkvOF3RTmVfn"
    if "messages" not in st.session_state:
        st.session_state["messages"] = []

    for message in st.session_state.messages:
        role, content = message["role"], message["content"]
        st.chat_message(role).write(content)

    if prompt := st.chat_input():
        st.session_state.messages.append({"role": "user", "content": prompt})
        st.chat_message("user").write(prompt)

        try:
            thread = client.beta.threads.create()
            thread_id = thread.id
            client.beta.threads.messages.create(
                thread_id=thread_id,
                role="user",
                content=prompt
            )
            
            run = client.beta.threads.runs.create(
                thread_id=thread_id,
                assistant_id=ASSISTANT_ID
            )

            while True:
                run_status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
                if run_status.status == "completed":
                    break
                time.sleep(1)

            messages = client.beta.threads.messages.list(thread_id=thread_id)
            assistant_message = messages.data[0].content[0].text.value
            st.chat_message("assistant").write(assistant_message)
            st.session_state.messages.append({"role": "assistant", "content": assistant_message})
        except Exception as e:
            st.error(f"Error: {str(e)}")

with tab2:
    st.subheader("Minutes")
    uploaded_files = st.file_uploader("Upload meeting minutes (PDF/DOCX/Audio)", type=["pdf", "docx", "mp3", "wav", "m4a"], accept_multiple_files=True)
    
    if uploaded_files:
        st.write("### Uploaded Files:")
        for uploaded_file in uploaded_files:
            st.write(f"- {uploaded_file.name}")
        
        combined_text = ""
        for uploaded_file in uploaded_files:
            if uploaded_file.name.lower().endswith(SUPPORTED_AUDIO_FORMATS):
                audio = AudioSegment.from_file(uploaded_file)
                audio.export("temp_audio.mp3", format="mp3")
                with open("temp_audio.mp3", "rb") as audio_file:
                    transcription = client.audio.transcriptions.create(
                        model="whisper-1",
                        file=audio_file
                    )
                combined_text += transcription.text + "\n"
            else:
                if uploaded_file.name.endswith(".docx"):
                    doc = Document(uploaded_file)
                    combined_text += "\n".join([para.text for para in doc.paragraphs])
                elif uploaded_file.name.endswith(".pdf"):
                    pdf_reader = PyPDF2.PdfReader(uploaded_file)
                    combined_text += "\n".join([page.extract_text() for page in pdf_reader.pages if page.extract_text()])
        
        if combined_text:
            st.write("### Transcribed and Extracted Text:")
            st.text_area("Meeting Transcript", combined_text, height=300)
            
            if st.button("Generate Meeting Minutes"):
                response = client.chat.completions.create(
                    model="gpt-4-turbo",
                    messages=[
                        {"role": "system", "content": "You are an AI assistant that generates professional meeting minutes."},
                        {"role": "user", "content": f"Summarize the following into structured meeting minutes:\n{combined_text}"}
                    ]
                )
                minutes = response.choices[0].message.content
                st.write("### Meeting Minutes:")
                st.text_area("Generated Minutes", minutes, height=300)

                date_stamp = datetime.now().strftime("%Y-%m-%d")
                file_name = f"Minutes_{date_stamp}.docx"
                doc = Document()
                doc.add_paragraph(minutes)
                doc.save(file_name)
                st.success(f"Meeting minutes saved as {file_name}")