import streamlit as st from openai import OpenAI import time import os import re import pandas as pd import PyPDF2 from datetime import datetime from pydub import AudioSegment from docx import Document from io import BytesIO st.set_page_config(page_title="Schlager ContractAi") st.title("Schlager ContractAi") st.caption("Chat with your contract or manage meeting minutes") # Sidebar for API Key input with st.sidebar: OPENAI_API_KEY = st.text_input("Enter your C2 Group of Technologies provided key", type="password") # Tabs for Contract and Minutes tab1, tab2 = st.tabs(["Contract", "Minutes"]) SUPPORTED_AUDIO_FORMATS = (".mp3", ".wav", ".m4a") SUPPORTED_TEXT_FORMATS = (".txt", ".docx", ".csv", ".xlsx", ".pdf") with tab1: st.subheader("Contract Chat") if OPENAI_API_KEY: client = OpenAI(api_key=OPENAI_API_KEY) else: st.error("Please enter your C2 Group of Technologies provided key to continue.") st.stop() ASSISTANT_ID = "asst_rd9h8PfYuOmHbkvOF3RTmVfn" if "messages" not in st.session_state: st.session_state["messages"] = [] for message in st.session_state.messages: role, content = message["role"], message["content"] st.chat_message(role).write(content) if prompt := st.chat_input(): st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) try: thread = client.beta.threads.create() thread_id = thread.id client.beta.threads.messages.create( thread_id=thread_id, role="user", content=prompt ) run = client.beta.threads.runs.create( thread_id=thread_id, assistant_id=ASSISTANT_ID ) while True: run_status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id) if run_status.status == "completed": break time.sleep(1) messages = client.beta.threads.messages.list(thread_id=thread_id) assistant_message = messages.data[0].content[0].text.value st.chat_message("assistant").write(assistant_message) st.session_state.messages.append({"role": "assistant", "content": assistant_message}) except Exception as e: st.error(f"Error: {str(e)}") with tab2: st.subheader("Minutes") uploaded_files = st.file_uploader("Upload meeting minutes (PDF/DOCX/Audio)", type=["pdf", "docx", "mp3", "wav", "m4a"], accept_multiple_files=True) if uploaded_files: st.write("### Uploaded Files:") for uploaded_file in uploaded_files: st.write(f"- {uploaded_file.name}") combined_text = "" for uploaded_file in uploaded_files: if uploaded_file.name.lower().endswith(SUPPORTED_AUDIO_FORMATS): audio = AudioSegment.from_file(uploaded_file) temp_audio_path = "temp_audio.mp3" audio.export(temp_audio_path, format="mp3") with open(temp_audio_path, "rb") as audio_file: transcription = client.audio.transcriptions.create( model="whisper-1", file=audio_file ) combined_text += transcription.text + "\n" os.remove(temp_audio_path) else: if uploaded_file.name.endswith(".docx"): doc = Document(uploaded_file) combined_text += "\n".join([para.text for para in doc.paragraphs]) elif uploaded_file.name.endswith(".pdf"): pdf_reader = PyPDF2.PdfReader(uploaded_file) combined_text += "\n".join([page.extract_text() for page in pdf_reader.pages if page.extract_text()]) if combined_text: st.write("### Transcribed and Extracted Text:") st.text_area("Meeting Transcript", combined_text, height=300) if st.button("Generate Meeting Minutes"): response = client.chat.completions.create( model="gpt-4-turbo", messages=[ {"role": "system", "content": "You are an AI assistant that generates professional meeting minutes."}, {"role": "user", "content": f"Summarize the following into structured meeting minutes:\n{combined_text}"} ] ) minutes = response.choices[0].message.content st.write("### Meeting Minutes:") st.text_area("Generated Minutes", minutes, height=300) date_stamp = datetime.now().strftime("%Y-%m-%d") file_name = f"Minutes_{date_stamp}.docx" doc = Document() doc.add_paragraph(minutes) docx_io = BytesIO() doc.save(docx_io) docx_io.seek(0) st.download_button(label="Download Meeting Minutes", data=docx_io, file_name=file_name, mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document")