final-project / app.py
TFToodie's picture
Update app.py
6759ca3 verified
raw
history blame
782 Bytes
import streamlit as st
from transformers import BertTokenizer, BertForSequenceClassification
import torch
# Load the pre-trained BERT model and tokenizer
model_name = "bert-base-uncased" # Replace with your specific model if needed
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name)
# Streamlit UI
st.title("BERT Text Classification")
text_input = st.text_input("Enter text for classification:")
if text_input:
# Tokenize input
inputs = tokenizer(text_input, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class = torch.argmax(logits, dim=1).item()
st.write(f"Predicted Class: {predicted_class}")