Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import PyPDF2 | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
import pandas as pd # For displaying rankings in a table | |
import re | |
import math | |
# Load the token classification pipeline | |
model_name = "jjzha/jobbert_knowledge_extraction" | |
pipe = pipeline("token-classification", model=model_name, aggregation_strategy="first") | |
# Aggregate overlapping or adjacent spans into 1 entity | |
def aggregate_span(results): | |
new_results = [] | |
current_result = results[0] | |
for result in results[1:]: | |
if result["start"] == current_result["end"] + 1: | |
current_result["word"] += " " + result["word"] | |
current_result["end"] = result["end"] | |
else: | |
new_results.append(current_result) | |
current_result = result | |
new_results.append(current_result) | |
return new_results | |
# Extract knowledge entities from job posting | |
def ner(text): | |
output_knowledge = pipe(text) | |
for result in output_knowledge: | |
if result.get("entity_group"): | |
result["entity"] = "Knowledge" | |
del result["entity_group"] | |
if len(output_knowledge) > 0: | |
output_knowledge = aggregate_span(output_knowledge) | |
return {"text": text, "entities": output_knowledge} | |
# Extract text from input PDF | |
def extract_pdf(pdf_file): | |
reader = PyPDF2.PdfReader(pdf_file) | |
text = '' | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
def rank_knowledge(entities, job_posting_text, resume_text): | |
scores = {} | |
priority_keywords = ["must-have", "required", "preferred", "key", "important"] | |
for entity in entities: | |
term = entity["word"].lower() | |
term_score = 0 | |
# Count exact matches of the term in the job posting | |
term_score += len(re.findall(rf'\b{re.escape(term)}\b', job_posting_text.lower())) | |
# Proximity to priority keywords | |
term_positions = [m.start() for m in re.finditer(rf'\b{re.escape(term)}\b', job_posting_text.lower())] | |
for keyword in priority_keywords: | |
keyword_positions = [m.start() for m in re.finditer(rf'\b{re.escape(keyword)}\b', job_posting_text.lower())] | |
for t_pos in term_positions: | |
for k_pos in keyword_positions: | |
if abs(t_pos - k_pos) < 20: # Within 20 characters | |
term_score += 1 | |
scores[term] = term_score | |
# Normalize | |
max_score = max(scores.values(), default=1) | |
ranked_entities = [ | |
{ | |
"Term": k, | |
"Score": (math.log1p(v) / math.log1p(max_score)) * 100, # Log scaling | |
"In Resume": "Yes" if k in resume_text.lower() else "No" | |
} | |
for k, v in scores.items() | |
] | |
ranked_entities.sort(key=lambda x: x["Score"], reverse=True) | |
return ranked_entities | |
# Compare extracted knowledge entities with the resume | |
def compare_with_resume(output_knowledge, resume_file): | |
resume_text = extract_pdf(resume_file) if resume_file else '' | |
matched_knowledge = [] | |
unmatched_knowledge = [] | |
for entity in output_knowledge: | |
if entity["word"].lower() in resume_text.lower(): | |
matched_knowledge.append(entity["word"]) | |
else: | |
unmatched_knowledge.append(entity["word"]) | |
return matched_knowledge, unmatched_knowledge | |
def plot_comparison(matched_knowledge, unmatched_knowledge): | |
labels = ['Matched', 'Unmatched'] | |
values = [len(matched_knowledge), len(unmatched_knowledge)] | |
total = sum(values) | |
percentages = [f"{(value / total * 100):.1f}%" for value in values] | |
plt.figure(figsize=(6, 4)) | |
bars = plt.bar(labels, values, color=['green', 'red']) | |
plt.xlabel('Knowledge Match Status') | |
plt.ylabel('Count') | |
plt.title('Knowledge Match Comparison') | |
plt.tight_layout() | |
# Add percentage labels above bars | |
for bar, percentage in zip(bars, percentages): | |
plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height() + 0.1, percentage, ha='center', fontsize=10) | |
buf = BytesIO() | |
plt.savefig(buf, format='png') | |
buf.seek(0) | |
plt.close() | |
return Image.open(buf) | |
def plot_pie_chart(ranked_knowledge, threshold=50): | |
# Filter terms above the threshold | |
filtered_terms = [term for term in ranked_knowledge if term["Score"] > threshold] | |
matched_terms = sum(1 for term in filtered_terms if term["In Resume"] == "Yes") | |
unmatched_terms = len(filtered_terms) - matched_terms | |
# Data for pie chart | |
labels = ['Matched', 'Unmatched'] | |
values = [matched_terms, unmatched_terms] | |
# Create pie chart | |
plt.figure(figsize=(6, 4)) | |
plt.pie(values, labels=labels, autopct='%1.1f%%', colors=['green', 'red'], startangle=90) | |
plt.title(f"Terms Above Threshold (Score > {threshold})") | |
buf = BytesIO() | |
plt.savefig(buf, format='png') | |
buf.seek(0) | |
plt.close() | |
return Image.open(buf) | |
def ner_and_compare_with_plot_and_rank(job_posting_text, resume_file): | |
"""Combined function to process NER, comparison, ranking, and visualization.""" | |
ner_result = ner(job_posting_text) | |
resume_text = extract_pdf(resume_file) if resume_file else '' | |
matched_knowledge, unmatched_knowledge = compare_with_resume(ner_result["entities"], resume_file) | |
comparison_result = { | |
"Matched Knowledge": matched_knowledge, | |
"Unmatched Knowledge": unmatched_knowledge, | |
} | |
bar_plot = plot_comparison(matched_knowledge, unmatched_knowledge) | |
# Ranking knowledge entities with "In Resume" column | |
ranked_knowledge = rank_knowledge(ner_result["entities"], job_posting_text, resume_text) | |
# Generate pie chart for a fixed threshold | |
pie_chart = plot_pie_chart(ranked_knowledge, threshold=50) | |
# Convert ranked knowledge to a DataFrame for better display | |
ranked_df = pd.DataFrame(ranked_knowledge) | |
return ner_result, ranked_df, bar_plot, pie_chart | |
# Gradio interface setup | |
interface = gr.Interface( | |
fn=ner_and_compare_with_plot_and_rank, | |
inputs=[ | |
gr.Textbox(label="Enter Job Posting Text", lines=20, placeholder="Paste job posting text here..."), | |
gr.File(label="Upload a PDF of your resume") | |
], | |
outputs=[ | |
"highlight", # Highlighted job posting text with extracted entities | |
gr.DataFrame(label="Ranked Knowledge"), # Ranked knowledge table | |
gr.Image(label="Pie Chart for Terms Above Threshold"), | |
gr.Image(label="Comparison Chart"), # Bar chart visualization | |
], | |
title="Resume vs Job Posting Knowledge Match with Highlights and Rankings", | |
description="Upload your resume and enter a job posting. The app will highlight key knowledge from the job posting, check if they are present in your resume, visualize the comparison, and rank knowledge terms based on importance.", | |
) | |
# Launch the Gradio app | |
interface.launch() | |