File size: 3,494 Bytes
9fbb6ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c48aea
9fbb6ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive

# Authenticate and create the PyDrive client.
gauth = GoogleAuth()
gauth.LocalWebserverAuth()
drive = GoogleDrive(gauth)

# Replace 'file_id' with the actual ID of your file in Google Drive.
file_id = '1lDfR_B3fYM_rmC8H_HDtRdxJKveYWmOp'

# Create a GoogleDriveFile instance with the file ID.
file_obj = drive.CreateFile({'id': file_id})

# Download the file content.
downloaded_file_path = 'downloaded_model.pth'
file_obj.GetContentFile(downloaded_file_path)

print("ok")

# import gradio as gr
# from transformers import AutoModelForSequenceClassification, AutoTokenizer
# import torch
# from sentence_transformers import SentenceTransformer, models
# param_max_length=256
    
# # Define a function that takes a text input and returns the result
# def analyze_text(input):
#     # Your processing or model inference code here
#     result = predict_similarity(input)
#     return result

# param_model_name="CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth"

# tokenizer = AutoTokenizer.from_pretrained(param_model_name)

# class BertForSTS(torch.nn.Module):

#     def __init__(self):
#         super(BertForSTS, self).__init__()
#         #self.bert = models.Transformer('bert-base-uncased', max_seq_length=128)
#         #self.bert = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth")
#         self.bert = models.Transformer(param_model_name, max_seq_length=param_max_length)


#         dimension= self.bert.get_word_embedding_dimension()
#         #print(dimension)
#         self.pooling_layer = models.Pooling(dimension)
#         self.dropout = torch.nn.Dropout(0.1)

#         # relu activation function
#         self.relu =  torch.nn.ReLU()

#         # dense layer 1
#         self.fc1 = torch.nn.Linear(dimension,512)

#         # dense layer 2 (Output layer)
#         self.fc2 = torch.nn.Linear(512,512)
#         #self.pooling_layer = models.Pooling(self.bert.config.hidden_size)
#         self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1])
#         #self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1, self.relu, self.dropout,self.fc2])
#     def forward(self, input_data):
#         #print(input_data)
#         x=self.bert(input_data)
#         x=self.pooling_layer(x)
#         x=self.fc1(x['sentence_embedding'])
#         x = self.relu(x)
#         x = self.dropout(x)
#         #x = self.fc2(x)

#         return x



# model_load_path = "model.pt"
# model = BertForSTS()
# model.load_state_dict(torch.load(model_load_path))
# model.to(device)

# def predict_similarity(sentence_pair):
#   test_input = tokenizer(sentence_pair, padding='max_length', max_length = param_max_length, truncation=True, return_tensors="pt").to(device)
#   test_input['input_ids'] = test_input['input_ids']
#   print(test_input['input_ids'])
#   test_input['attention_mask'] = test_input['attention_mask']
#   del test_input['token_type_ids']
#   output = model(test_input)
#   sim = torch.nn.functional.cosine_similarity(output[0], output[1], dim=0).item()*2-1

#   return sim

# # Create a Gradio interface with a text input zone
# iface = gr.Interface(
#     fn=analyze_text,          # The function to be called with user input
#     inputs=[gr.Textbox(), gr.Textbox()],
#     outputs="text"            # Display the result as text
# )

# # # Launch the Gradio interface
# iface.launch()