from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive # Authenticate and create the PyDrive client. gauth = GoogleAuth() gauth.LocalWebserverAuth() drive = GoogleDrive(gauth) # Replace 'file_id' with the actual ID of your file in Google Drive. file_id = '1lDfR_B3fYM_rmC8H_HDtRdxJKveYWmOp' # Create a GoogleDriveFile instance with the file ID. file_obj = drive.CreateFile({'id': file_id}) # Download the file content. downloaded_file_path = 'downloaded_model.pth' file_obj.GetContentFile(downloaded_file_path) print("ok") # import gradio as gr # from transformers import AutoModelForSequenceClassification, AutoTokenizer # import torch # from sentence_transformers import SentenceTransformer, models # param_max_length=256 # # Define a function that takes a text input and returns the result # def analyze_text(input): # # Your processing or model inference code here # result = predict_similarity(input) # return result # param_model_name="CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth" # tokenizer = AutoTokenizer.from_pretrained(param_model_name) # class BertForSTS(torch.nn.Module): # def __init__(self): # super(BertForSTS, self).__init__() # #self.bert = models.Transformer('bert-base-uncased', max_seq_length=128) # #self.bert = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth") # self.bert = models.Transformer(param_model_name, max_seq_length=param_max_length) # dimension= self.bert.get_word_embedding_dimension() # #print(dimension) # self.pooling_layer = models.Pooling(dimension) # self.dropout = torch.nn.Dropout(0.1) # # relu activation function # self.relu = torch.nn.ReLU() # # dense layer 1 # self.fc1 = torch.nn.Linear(dimension,512) # # dense layer 2 (Output layer) # self.fc2 = torch.nn.Linear(512,512) # #self.pooling_layer = models.Pooling(self.bert.config.hidden_size) # self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1]) # #self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1, self.relu, self.dropout,self.fc2]) # def forward(self, input_data): # #print(input_data) # x=self.bert(input_data) # x=self.pooling_layer(x) # x=self.fc1(x['sentence_embedding']) # x = self.relu(x) # x = self.dropout(x) # #x = self.fc2(x) # return x # model_load_path = "model.pt" # model = BertForSTS() # model.load_state_dict(torch.load(model_load_path)) # model.to(device) # def predict_similarity(sentence_pair): # test_input = tokenizer(sentence_pair, padding='max_length', max_length = param_max_length, truncation=True, return_tensors="pt").to(device) # test_input['input_ids'] = test_input['input_ids'] # print(test_input['input_ids']) # test_input['attention_mask'] = test_input['attention_mask'] # del test_input['token_type_ids'] # output = model(test_input) # sim = torch.nn.functional.cosine_similarity(output[0], output[1], dim=0).item()*2-1 # return sim # # Create a Gradio interface with a text input zone # iface = gr.Interface( # fn=analyze_text, # The function to be called with user input # inputs=[gr.Textbox(), gr.Textbox()], # outputs="text" # Display the result as text # ) # # # Launch the Gradio interface # iface.launch()