Spaces:
Sleeping
Sleeping
File size: 825 Bytes
fc1183e 5abb6ea b0b048d 5abb6ea b0b048d 5abb6ea b0b048d c8cfe36 b0b048d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import os
import gradio as gr
import spaces
from transformers import pipeline
import torch
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' 🤔
token = os.getenv("HF_TOKEN")
# gr.load("models/ICILS/xlm-r-icils-ilo", hf_token=token).launch()
# Load the pre-trained model
classifier = pipeline("text-classification", model="ICILS/xlm-r-icils-ilo", hf_token=token)
# Define the prediction function
@spaces.GPU
def classify_text(text):
return classifier(text)[0]
# Create the Gradio interface
demo = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
outputs=gr.Text(),
title="XLM-R ISCO classification with ZeroGPU",
description="Classify occupations using a pre-trained XLM-R-ISCO model on Hugging Face Spaces with ZeroGPU"
)
demo.launch() |