Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import spaces | |
from transformers import pipeline | |
import huggingface_hub | |
# Login to Hugging Face Hub | |
token = os.getenv("HF_TOKEN") | |
huggingface_hub.login(token=token) | |
# Load the pre-trained model | |
classifier = pipeline("text-classification", model="ICILS/xlm-r-icils-ilo", device=0) | |
# Define the prediction function | |
def classify_text(text): | |
result = classifier(text)[0] | |
label = result['label'] | |
score = result['score'] | |
return label, score | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=classify_text, | |
inputs=gr.Textbox(lines=2, label="Job description text", placeholder="Enter a job description..."), | |
outputs=[gr.Textbox(label="ISCO-08 Label"), gr.Number(label="Score")], | |
title="XLM-R ISCO classification with ZeroGPU", | |
description="Classify occupations using a pre-trained XLM-R-ISCO model on Hugging Face Spaces with ZeroGPU" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |