import os import gradio as gr import spaces from transformers import pipeline import torch zero = torch.Tensor([0]).cuda() print(zero.device) # <-- 'cpu' 🤔 token = os.getenv("HF_TOKEN") # gr.load("models/ICILS/xlm-r-icils-ilo", hf_token=token).launch() # Load the pre-trained model classifier = pipeline("text-classification", model="ICILS/xlm-r-icils-ilo", hf_token=token) # Define the prediction function @spaces.GPU def classify_text(text): return classifier(text)[0] # Create the Gradio interface demo = gr.Interface( fn=classify_text, inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), outputs=gr.Text(), title="XLM-R ISCO classification with ZeroGPU", description="Classify occupations using a pre-trained XLM-R-ISCO model on Hugging Face Spaces with ZeroGPU" ) demo.launch()