import os import gradio as gr import spaces from transformers import pipeline import huggingface_hub # Login to Hugging Face Hub token = os.getenv("HF_TOKEN") huggingface_hub.login(token=token) # Load the pre-trained model classifier = pipeline("text-classification", model="ICILS/xlm-r-icils-ilo", device=0) # Define the prediction function @spaces.GPU def classify_text(text): result = classifier(text)[0] label = result['label'] score = result['score'] return label, score # Create the Gradio interface demo = gr.Interface( fn=classify_text, inputs=gr.Textbox(lines=2, label="Job description text", placeholder="Enter a job description..."), outputs=[gr.Textbox(label="ISCO-08 Label"), gr.Number(label="Score")], title="XLM-R ISCO classification with ZeroGPU", description="Classify occupations using a pre-trained XLM-R-ISCO model on Hugging Face Spaces with ZeroGPU" ) if __name__ == "__main__": demo.launch()