hysts HF Staff commited on
Commit
2e8ded9
·
1 Parent(s): 6a9ba12

commit files to HF hub

Browse files
Files changed (1) hide show
  1. papers.csv +2 -2
papers.csv CHANGED
@@ -776,7 +776,7 @@ abess: A Fast Best-Subset Selection Library in Python and R,"Jin Zhu, Xueqin Wan
776
  SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process,"Zichong Li, Yanbo Xu, Simiao Zuo, Haoming Jiang, Chao Zhang, Tuo Zhao, Hongyuan Zha",,,,,,,,,
777
  User-level Private Stochastic Convex Optimization with Optimal Rates,"Raef Bassily, Ziteng Sun",,,,,,,,,
778
  Improved Online Learning Algorithms for CTR Prediction in Ad Auctions,"Zhe Feng, Christopher Liaw, Zixin Zhou",,,,,,,,,
779
- Memory-Based Meta-Learning on Non-Stationary Distributions,"Tim Genewein, Gregoire Deletang, Anian Ruoss, Li Kevin Wenliang, Elliot Catt, Vincent Dutordoir, Jordi Grau-Moya, Laurent Orseau, Marcus Hutter, Joel Veness",http://arxiv.org/abs/2302.03067,,https://huggingface.co/papers/2302.03067,,,,2302.03067,10,0
780
  Revisiting Sampling for Combinatorial Optimization,"Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, Hanjun Dai",,,,,,,,,
781
  Beam Tree Recursive Cells,"Jishnu Ray Chowdhury, Cornelia Caragea",http://arxiv.org/abs/2305.19999,https://github.com/JRC1995/BeamTreeRecursiveCells,https://huggingface.co/papers/2305.19999,,,,2305.19999,2,1
782
  Posterior Sampling for Deep Reinforcement Learning,"Remo Sasso, Michelangelo Conserva, Paulo Rauber",http://arxiv.org/abs/2305.00477,,https://huggingface.co/papers/2305.00477,,,,2305.00477,3,0
@@ -818,7 +818,7 @@ One-shot Imitation in a Non-Stationary Environment via Multi-Modal Skill,"Sangwo
818
  Model-based Offline Reinforcement Learning with Count-based Conservatism,"Byeongchan Kim, Min-hwan Oh",,,,,,,,,
819
  Are Gaussian Data All You Need? The Extents and Limits of Universality in High-Dimensional Generalized Linear Estimation,"Luca Pesce, FLORENT KRZAKALA, Bruno Loureiro, Ludovic Stephan",,,,,,,,,
820
  Algorithms for bounding contribution for histogram estimation under user-level privacy,"Yuhan Liu, Ananda Suresh, Wennan Zhu, Peter Kairouz, Marco Gruteser",,,,,,,,,
821
- On Pitfalls of Test-Time Adaptation,"Hao Zhao, Hao Zhao, Yuejiang Liu, Alexandre Alahi, Tao Lin",http://arxiv.org/abs/2306.03536,https://github.com/lins-lab/ttab,https://huggingface.co/papers/2306.03536,,,,2306.03536,4,0
822
  Generalized Implicit Follow-The-Regularized-Leader,"Keyi Chen, Francesco Orabona",http://arxiv.org/abs/2306.00201,,https://huggingface.co/papers/2306.00201,,,,2306.00201,2,0
823
  Simplified Temporal Consistency Reinforcement Learning,"Yi Zhao, Wenshuai Zhao, Rinu Boney, Kannala Juho, Joni Pajarinen",http://arxiv.org/abs/2306.09466,,https://huggingface.co/papers/2306.09466,,,,2306.09466,5,0
824
  "Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data","Minshuo Chen, Kaixuan Huang, Tuo Zhao, Mengdi Wang",http://arxiv.org/abs/2302.07194,,https://huggingface.co/papers/2302.07194,,,,2302.07194,4,0
 
776
  SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process,"Zichong Li, Yanbo Xu, Simiao Zuo, Haoming Jiang, Chao Zhang, Tuo Zhao, Hongyuan Zha",,,,,,,,,
777
  User-level Private Stochastic Convex Optimization with Optimal Rates,"Raef Bassily, Ziteng Sun",,,,,,,,,
778
  Improved Online Learning Algorithms for CTR Prediction in Ad Auctions,"Zhe Feng, Christopher Liaw, Zixin Zhou",,,,,,,,,
779
+ Memory-Based Meta-Learning on Non-Stationary Distributions,"Tim Genewein, Gregoire Deletang, Anian Ruoss, Li Kevin Wenliang, Elliot Catt, Vincent Dutordoir, Jordi Grau-Moya, Laurent Orseau, Marcus Hutter, Joel Veness",http://arxiv.org/abs/2302.03067,,https://huggingface.co/papers/2302.03067,,,,2302.03067,10,1
780
  Revisiting Sampling for Combinatorial Optimization,"Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, Hanjun Dai",,,,,,,,,
781
  Beam Tree Recursive Cells,"Jishnu Ray Chowdhury, Cornelia Caragea",http://arxiv.org/abs/2305.19999,https://github.com/JRC1995/BeamTreeRecursiveCells,https://huggingface.co/papers/2305.19999,,,,2305.19999,2,1
782
  Posterior Sampling for Deep Reinforcement Learning,"Remo Sasso, Michelangelo Conserva, Paulo Rauber",http://arxiv.org/abs/2305.00477,,https://huggingface.co/papers/2305.00477,,,,2305.00477,3,0
 
818
  Model-based Offline Reinforcement Learning with Count-based Conservatism,"Byeongchan Kim, Min-hwan Oh",,,,,,,,,
819
  Are Gaussian Data All You Need? The Extents and Limits of Universality in High-Dimensional Generalized Linear Estimation,"Luca Pesce, FLORENT KRZAKALA, Bruno Loureiro, Ludovic Stephan",,,,,,,,,
820
  Algorithms for bounding contribution for histogram estimation under user-level privacy,"Yuhan Liu, Ananda Suresh, Wennan Zhu, Peter Kairouz, Marco Gruteser",,,,,,,,,
821
+ On Pitfalls of Test-Time Adaptation,"Hao Zhao, Hao Zhao, Yuejiang Liu, Alexandre Alahi, Tao Lin",http://arxiv.org/abs/2306.03536,https://github.com/lins-lab/ttab,https://huggingface.co/papers/2306.03536,,,,2306.03536,4,1
822
  Generalized Implicit Follow-The-Regularized-Leader,"Keyi Chen, Francesco Orabona",http://arxiv.org/abs/2306.00201,,https://huggingface.co/papers/2306.00201,,,,2306.00201,2,0
823
  Simplified Temporal Consistency Reinforcement Learning,"Yi Zhao, Wenshuai Zhao, Rinu Boney, Kannala Juho, Joni Pajarinen",http://arxiv.org/abs/2306.09466,,https://huggingface.co/papers/2306.09466,,,,2306.09466,5,0
824
  "Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data","Minshuo Chen, Kaixuan Huang, Tuo Zhao, Mengdi Wang",http://arxiv.org/abs/2302.07194,,https://huggingface.co/papers/2302.07194,,,,2302.07194,4,0