Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import StableDiffusionPipeline | |
# from PIL import Image | |
device="cpu" | |
model_id = "IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1" | |
# pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, unet=unet).to(device) | |
pipe_text2img = StableDiffusionPipeline.from_pretrained(model_id).to(device) | |
def resize(w_val,l_val,img): | |
img = Image.open(img) | |
img = img.resize((w_val,l_val), Image.Resampling.LANCZOS) | |
return img | |
def infer(prompt, guide, steps, width, height): | |
image_list = pipe_text2img([prompt], guidance_scale=guide, num_inference_steps=steps, width=width, height=height) | |
images = [] | |
for i, image in enumerate(image_list["sample"]): | |
images.append(image) | |
return image | |
gr.Interface(fn=infer, inputs= | |
[ | |
# gr.Image(source="upload", type="filepath", label="原始图像"), | |
gr.Textbox(label = '提示词(prompt)'), | |
gr.Slider(2, 15, value = 7, label = '文本引导强度'), | |
gr.Slider(10, 30, value = 20, step = 1, label = '迭代次数'), | |
gr.Slider(256, 768, value = 512, step = 64, label = '宽度'), | |
gr.Slider(256, 768, value = 512, step = 64, label = '高度'), | |
],outputs='image').queue(concurrency_count=10).launch() |