File size: 14,656 Bytes
7eafae4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import torch
import torch.nn as nn
import torch.nn.functional as F


class RLN(nn.Module):
	r"""Revised LayerNorm"""
	def __init__(self, dim, eps=1e-5, detach_grad=False):
		super(RLN, self).__init__()
		self.eps = eps
		self.detach_grad = detach_grad

		self.weight = nn.Parameter(torch.ones((1, dim, 1, 1)))
		self.bias = nn.Parameter(torch.zeros((1, dim, 1, 1)))

		self.meta1 = nn.Conv2d(1, dim, 1)
		self.meta2 = nn.Conv2d(1, dim, 1)

	def forward(self, input):
		mean = torch.mean(input, dim=(1, 2, 3), keepdim=True)
		std = torch.sqrt((input - mean).pow(2).mean(dim=(1, 2, 3), keepdim=True) + self.eps)

		normalized_input = (input - mean) / std

		if self.detach_grad:
			rescale, rebias = self.meta1(std.detach()), self.meta2(mean.detach())
		else:
			rescale, rebias = self.meta1(std), self.meta2(mean)

		out = normalized_input * self.weight + self.bias
		return out, rescale, rebias


class Mlp(nn.Module):
	def __init__(self, network_depth, in_features, hidden_features=None, out_features=None):
		super().__init__()
		out_features = out_features or in_features
		hidden_features = hidden_features or in_features

		self.network_depth = network_depth

		self.mlp = nn.Sequential(
			nn.Conv2d(in_features, hidden_features, 1),
			nn.ReLU(True),
			nn.Conv2d(hidden_features, out_features, 1)
		)

	def forward(self, x):
		return self.mlp(x)


def window_partition(x, window_size):
	B, H, W, C = x.shape
	x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
	windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size**2, C)
	return windows


def window_reverse(windows, window_size, H, W):
	B = int(windows.shape[0] / (H * W / window_size / window_size))
	x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
	x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
	return x


def get_relative_positions(window_size):
	coords_h = torch.arange(window_size)
	coords_w = torch.arange(window_size)

	coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij"))  # 2, Wh, Ww
	coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
	relative_positions = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww

	relative_positions = relative_positions.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
	relative_positions_log  = torch.sign(relative_positions) * torch.log(1. + relative_positions.abs())

	return relative_positions_log


class WindowAttention(nn.Module):
	def __init__(self, dim, window_size, num_heads):

		super().__init__()
		self.dim = dim
		self.window_size = window_size  # Wh, Ww
		self.num_heads = num_heads
		head_dim = dim // num_heads
		self.scale = head_dim ** -0.5

		relative_positions = get_relative_positions(self.window_size)
		self.register_buffer("relative_positions", relative_positions)
		self.meta = nn.Sequential(
			nn.Linear(2, 256, bias=True),
			nn.ReLU(True),
			nn.Linear(256, num_heads, bias=True)
		)

		self.softmax = nn.Softmax(dim=-1)

	def forward(self, qkv):
		B_, N, _ = qkv.shape

		qkv = qkv.reshape(B_, N, 3, self.num_heads, self.dim // self.num_heads).permute(2, 0, 3, 1, 4)

		q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

		q = q * self.scale
		attn = (q @ k.transpose(-2, -1))

		relative_position_bias = self.meta(self.relative_positions)
		relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
		attn = attn + relative_position_bias.unsqueeze(0)

		attn = self.softmax(attn)

		x = (attn @ v).transpose(1, 2).reshape(B_, N, self.dim)
		return x


class Attention(nn.Module):
	def __init__(self, network_depth, dim, num_heads, window_size, shift_size, use_attn=False, conv_type=None):
		super().__init__()
		self.dim = dim
		self.head_dim = int(dim // num_heads)
		self.num_heads = num_heads

		self.window_size = window_size
		self.shift_size = shift_size

		self.network_depth = network_depth
		self.use_attn = use_attn
		self.conv_type = conv_type

		if self.conv_type == 'Conv':
			self.conv = nn.Sequential(
				nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect'),
				nn.ReLU(True),
				nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect')
			)

		if self.conv_type == 'DWConv':
			self.conv = nn.Conv2d(dim, dim, kernel_size=5, padding=2, groups=dim, padding_mode='reflect')

		if self.conv_type == 'DWConv' or self.use_attn:
			self.V = nn.Conv2d(dim, dim, 1)
			self.proj = nn.Conv2d(dim, dim, 1)

		if self.use_attn:
			self.QK = nn.Conv2d(dim, dim * 2, 1)
			self.attn = WindowAttention(dim, window_size, num_heads)

	def check_size(self, x, shift=False):
		_, _, h, w = x.size()
		mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
		mod_pad_w = (self.window_size - w % self.window_size) % self.window_size

		if shift:
			x = F.pad(x, (self.shift_size, (self.window_size-self.shift_size+mod_pad_w) % self.window_size,
						  self.shift_size, (self.window_size-self.shift_size+mod_pad_h) % self.window_size), mode='reflect')
		else:
			x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
		return x

	def forward(self, X):
		B, C, H, W = X.shape

		if self.conv_type == 'DWConv' or self.use_attn:
			V = self.V(X)

		if self.use_attn:
			QK = self.QK(X)
			QKV = torch.cat([QK, V], dim=1)

			# shift
			shifted_QKV = self.check_size(QKV, self.shift_size > 0)
			Ht, Wt = shifted_QKV.shape[2:]

			# partition windows
			shifted_QKV = shifted_QKV.permute(0, 2, 3, 1)
			qkv = window_partition(shifted_QKV, self.window_size)  # nW*B, window_size**2, C

			attn_windows = self.attn(qkv)

			# merge windows
			shifted_out = window_reverse(attn_windows, self.window_size, Ht, Wt)  # B H' W' C

			# reverse cyclic shift
			out = shifted_out[:, self.shift_size:(self.shift_size+H), self.shift_size:(self.shift_size+W), :]
			attn_out = out.permute(0, 3, 1, 2)

			if self.conv_type in ['Conv', 'DWConv']:
				conv_out = self.conv(V)
				out = self.proj(conv_out + attn_out)
			else:
				out = self.proj(attn_out)

		else:
			if self.conv_type == 'Conv':
				out = self.conv(X)				# no attention and use conv, no projection
			elif self.conv_type == 'DWConv':
				out = self.proj(self.conv(V))

		return out


class TransformerBlock(nn.Module):
	def __init__(self, network_depth, dim, num_heads, mlp_ratio=4.,
				 norm_layer=nn.LayerNorm, mlp_norm=False,
				 window_size=8, shift_size=0, use_attn=True, conv_type=None):
		super().__init__()
		self.use_attn = use_attn
		self.mlp_norm = mlp_norm

		self.norm1 = norm_layer(dim) if use_attn else nn.Identity()
		self.attn = Attention(network_depth, dim, num_heads=num_heads, window_size=window_size,
							  shift_size=shift_size, use_attn=use_attn, conv_type=conv_type)

		self.norm2 = norm_layer(dim) if use_attn and mlp_norm else nn.Identity()
		self.mlp = Mlp(network_depth, dim, hidden_features=int(dim * mlp_ratio))

	def forward(self, x):
		identity = x
		if self.use_attn: x, rescale, rebias = self.norm1(x)
		x = self.attn(x)
		if self.use_attn: x = x * rescale + rebias
		x = identity + x

		identity = x
		if self.use_attn and self.mlp_norm: x, rescale, rebias = self.norm2(x)
		x = self.mlp(x)
		if self.use_attn and self.mlp_norm: x = x * rescale + rebias
		x = identity + x
		return x


class BasicLayer(nn.Module):
	def __init__(self, network_depth, dim, depth, num_heads, mlp_ratio=4.,
				 norm_layer=nn.LayerNorm, window_size=8,
				 attn_ratio=0., attn_loc='last', conv_type=None):

		super().__init__()
		self.dim = dim
		self.depth = depth

		attn_depth = attn_ratio * depth

		if attn_loc == 'last':
			use_attns = [i >= depth-attn_depth for i in range(depth)]
		elif attn_loc == 'first':
			use_attns = [i < attn_depth for i in range(depth)]
		elif attn_loc == 'middle':
			use_attns = [i >= (depth-attn_depth)//2 and i < (depth+attn_depth)//2 for i in range(depth)]

		# build blocks
		self.blocks = nn.ModuleList([
			TransformerBlock(network_depth=network_depth,
							 dim=dim, 
							 num_heads=num_heads,
							 mlp_ratio=mlp_ratio,
							 norm_layer=norm_layer,
							 window_size=window_size,
							 shift_size=0 if (i % 2 == 0) else window_size // 2,
							 use_attn=use_attns[i], conv_type=conv_type)
			for i in range(depth)])

	def forward(self, x):
		for blk in self.blocks:
			x = blk(x)
		return x


class PatchEmbed(nn.Module):
	def __init__(self, patch_size=4, in_chans=3, embed_dim=96, kernel_size=None):
		super().__init__()
		self.in_chans = in_chans
		self.embed_dim = embed_dim

		if kernel_size is None:
			kernel_size = patch_size

		self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size,
							  padding=(kernel_size-patch_size+1)//2, padding_mode='reflect')

	def forward(self, x):
		x = self.proj(x)
		return x


class PatchUnEmbed(nn.Module):
	def __init__(self, patch_size=4, out_chans=3, embed_dim=96, kernel_size=None):
		super().__init__()
		self.out_chans = out_chans
		self.embed_dim = embed_dim

		if kernel_size is None:
			kernel_size = 1

		self.proj = nn.Sequential(
			nn.Conv2d(embed_dim, out_chans*patch_size**2, kernel_size=kernel_size,
					  padding=kernel_size//2, padding_mode='reflect'),
			nn.PixelShuffle(patch_size)
		)

	def forward(self, x):
		x = self.proj(x)
		return x


class SKFusion(nn.Module):
	def __init__(self, dim, height=2, reduction=8):
		super(SKFusion, self).__init__()
		
		self.height = height
		d = max(int(dim/reduction), 4)
		
		self.avg_pool = nn.AdaptiveAvgPool2d(1)
		self.mlp = nn.Sequential(
			nn.Conv2d(dim, d, 1, bias=False), 
			nn.ReLU(),
			nn.Conv2d(d, dim*height, 1, bias=False)
		)
		
		self.softmax = nn.Softmax(dim=1)

	def forward(self, in_feats):
		B, C, H, W = in_feats[0].shape
		
		in_feats = torch.cat(in_feats, dim=1)
		in_feats = in_feats.view(B, self.height, C, H, W)
		
		feats_sum = torch.sum(in_feats, dim=1)
		attn = self.mlp(self.avg_pool(feats_sum))
		attn = self.softmax(attn.view(B, self.height, C, 1, 1))

		out = torch.sum(in_feats*attn, dim=1)
		return out      


class DehazeFormer(nn.Module):
	def __init__(self, in_chans=3, out_chans=3, window_size=8,
				 embed_dims=[24, 48, 96, 48, 24],
				 mlp_ratios=[2., 2., 4., 2., 2.],
				 depths=[4, 4, 8, 4, 4],
				 num_heads=[2, 4, 6, 4, 2],
				 attn_ratio=[1., 1., 1., 1., 1.],
				 conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv'],
				 norm_layer=[RLN, RLN, RLN, RLN, RLN]):
		super(DehazeFormer, self).__init__()

		# setting
		self.patch_size = 4
		self.window_size = window_size
		self.mlp_ratios = mlp_ratios

		# split image into non-overlapping patches
		self.patch_embed = PatchEmbed(
			patch_size=1, in_chans=in_chans, embed_dim=embed_dims[0], kernel_size=3)

		# backbone
		self.layer1 = BasicLayer(network_depth=sum(depths), dim=embed_dims[0], depth=depths[0],
					   			 num_heads=num_heads[0], mlp_ratio=mlp_ratios[0],
					   			 norm_layer=norm_layer[0], window_size=window_size,
					   			 attn_ratio=attn_ratio[0], attn_loc='last', conv_type=conv_type[0])

		self.patch_merge1 = PatchEmbed(
			patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])

		self.skip1 = nn.Conv2d(embed_dims[0], embed_dims[0], 1)

		self.layer2 = BasicLayer(network_depth=sum(depths), dim=embed_dims[1], depth=depths[1],
								 num_heads=num_heads[1], mlp_ratio=mlp_ratios[1],
								 norm_layer=norm_layer[1], window_size=window_size,
								 attn_ratio=attn_ratio[1], attn_loc='last', conv_type=conv_type[1])

		self.patch_merge2 = PatchEmbed(
			patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])

		self.skip2 = nn.Conv2d(embed_dims[1], embed_dims[1], 1)

		self.layer3 = BasicLayer(network_depth=sum(depths), dim=embed_dims[2], depth=depths[2],
								 num_heads=num_heads[2], mlp_ratio=mlp_ratios[2],
								 norm_layer=norm_layer[2], window_size=window_size,
								 attn_ratio=attn_ratio[2], attn_loc='last', conv_type=conv_type[2])

		self.patch_split1 = PatchUnEmbed(
			patch_size=2, out_chans=embed_dims[3], embed_dim=embed_dims[2])

		assert embed_dims[1] == embed_dims[3]
		self.fusion1 = SKFusion(embed_dims[3])

		self.layer4 = BasicLayer(network_depth=sum(depths), dim=embed_dims[3], depth=depths[3],
								 num_heads=num_heads[3], mlp_ratio=mlp_ratios[3],
								 norm_layer=norm_layer[3], window_size=window_size,
								 attn_ratio=attn_ratio[3], attn_loc='last', conv_type=conv_type[3])

		self.patch_split2 = PatchUnEmbed(
			patch_size=2, out_chans=embed_dims[4], embed_dim=embed_dims[3])

		assert embed_dims[0] == embed_dims[4]
		self.fusion2 = SKFusion(embed_dims[4])			

		self.layer5 = BasicLayer(network_depth=sum(depths), dim=embed_dims[4], depth=depths[4],
					   			 num_heads=num_heads[4], mlp_ratio=mlp_ratios[4],
					   			 norm_layer=norm_layer[4], window_size=window_size,
					   			 attn_ratio=attn_ratio[4], attn_loc='last', conv_type=conv_type[4])

		# merge non-overlapping patches into image
		self.patch_unembed = PatchUnEmbed(
			patch_size=1, out_chans=out_chans, embed_dim=embed_dims[4], kernel_size=3)

	def forward(self, x):
		x = self.patch_embed(x)
		x = self.layer1(x)
		skip1 = x

		x = self.patch_merge1(x)
		x = self.layer2(x)
		skip2 = x

		x = self.patch_merge2(x)
		x = self.layer3(x)
		x = self.patch_split1(x)

		x = self.fusion1([x, self.skip2(skip2)]) + x
		x = self.layer4(x)
		x = self.patch_split2(x)

		x = self.fusion2([x, self.skip1(skip1)]) + x
		x = self.layer5(x)
		x = self.patch_unembed(x)
		return x


class MCT(nn.Module):
	def __init__(self):
		super(MCT, self).__init__()
		self.ts = 256
		self.l = 8

		self.dims = 3 * 3 * self.l

		self.basenet = DehazeFormer(3, self.dims)

	def get_coord(self, x):
		B, _, H, W = x.size()

		coordh, coordw = torch.meshgrid([torch.linspace(-1,1,H), torch.linspace(-1,1,W)], indexing="ij")
		coordh = coordh.unsqueeze(0).unsqueeze(1).repeat(B,1,1,1)
		coordw = coordw.unsqueeze(0).unsqueeze(1).repeat(B,1,1,1)

		return coordw.detach(), coordh.detach()

	def mapping(self, x, param):
		# curves
		curve = torch.stack(torch.chunk(param, 3, dim=1), dim=1)
		curve_list = list(torch.chunk(curve, 3, dim=2))

		# grid: x, y, z -> w, h, d  ~[-1 ,1]
		x_list = list(torch.chunk(x.detach(), 3, dim=1))
		coordw, coordh = self.get_coord(x)
		grid_list = [torch.stack([coordw, coordh, x_i], dim=4) for x_i in x_list]

		# mapping
		out = sum([F.grid_sample(curve_i, grid_i, 'bilinear', 'border', True) \
				   for curve_i, grid_i in zip(curve_list, grid_list)]).squeeze(2)

		return out		# no Tanh is much better than using Tanh

	def forward(self, x):
		# param input
		x_d = F.interpolate(x, (self.ts, self.ts), mode='area')
		param = self.basenet(x_d)
		out = self.mapping(x, param)
		return out