Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import numpy as np | |
from PIL import Image | |
import base64 | |
from io import BytesIO | |
import torch | |
import torchvision.transforms.functional as F | |
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline | |
import gradio as gr | |
device = "cpu" # Linux & Windows | |
weight_type = torch.float32 # torch.float16 works as well, but pictures seem to be a bit worse | |
controlnet = ControlNetModel.from_pretrained( | |
"IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type | |
).to(device) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type | |
) | |
pipe.to(device) | |
style_list = [ | |
{ | |
"name": "No Style", | |
"prompt": "{prompt}", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
}, | |
] | |
styles = {k["name"]: k["prompt"] for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "No Style" | |
MAX_SEED = np.iinfo(np.int32).max | |
def pil_image_to_data_url(img, format="PNG"): | |
buffered = BytesIO() | |
img.save(buffered, format=format) | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return f"data:image/{format.lower()};base64,{img_str}" | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def run( | |
image, | |
prompt, | |
prompt_template, | |
style_name, | |
controlnet_conditioning_scale, | |
device_type="CPU", | |
param_dtype='torch.float16', | |
): | |
if device_type == "CPU": | |
device = "cpu" | |
param_dtype = 'torch.float32' | |
else: | |
device = "cuda" | |
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32) | |
print(f"prompt: {prompt}") | |
print("sketch updated") | |
if image is None: | |
ones = Image.new("L", (512, 512), 255) | |
temp_url = pil_image_to_data_url(ones) | |
return ones, gr.update(link=temp_url), gr.update(link=temp_url) | |
prompt = prompt_template.replace("{prompt}", prompt) | |
control_image = image.convert("RGB") | |
control_image = Image.fromarray(255 - np.array(control_image)) | |
output_pil = pipe( | |
prompt=prompt, | |
image=control_image, | |
width=512, | |
height=512, | |
guidance_scale=0.0, | |
num_inference_steps=1, | |
num_images_per_prompt=1, | |
output_type="pil", | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
).images[0] | |
input_sketch_url = pil_image_to_data_url(control_image) | |
output_image_url = pil_image_to_data_url(output_pil) | |
return ( | |
output_pil, | |
gr.update(link=input_sketch_url), | |
gr.update(link=output_image_url), | |
) | |
def update_canvas(use_line, use_eraser): | |
if use_eraser: | |
_color = "#ffffff" | |
brush_size = 20 | |
if use_line: | |
_color = "#000000" | |
brush_size = 8 | |
return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True) | |
def upload_sketch(file): | |
_img = Image.open(file.name) | |
_img = _img.convert("L") | |
return gr.update(value=_img, source="upload", interactive=True) | |
scripts = """ | |
async () => { | |
globalThis.theSketchDownloadFunction = () => { | |
console.log("test") | |
var link = document.createElement("a"); | |
dataUrl = document.getElementById('download_sketch').href | |
link.setAttribute("href", dataUrl) | |
link.setAttribute("download", "sketch.png") | |
document.body.appendChild(link); // Required for Firefox | |
link.click(); | |
document.body.removeChild(link); // Clean up | |
// also call the output download function | |
theOutputDownloadFunction(); | |
return false | |
} | |
globalThis.theOutputDownloadFunction = () => { | |
console.log("test output download function") | |
var link = document.createElement("a"); | |
dataUrl = document.getElementById('download_output').href | |
link.setAttribute("href", dataUrl); | |
link.setAttribute("download", "output.png"); | |
document.body.appendChild(link); // Required for Firefox | |
link.click(); | |
document.body.removeChild(link); // Clean up | |
return false | |
} | |
globalThis.UNDO_SKETCH_FUNCTION = () => { | |
console.log("undo sketch function") | |
var button_undo = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(1)'); | |
// Create a new 'click' event | |
var event = new MouseEvent('click', { | |
'view': window, | |
'bubbles': true, | |
'cancelable': true | |
}); | |
button_undo.dispatchEvent(event); | |
} | |
globalThis.DELETE_SKETCH_FUNCTION = () => { | |
console.log("delete sketch function") | |
var button_del = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(2)'); | |
// Create a new 'click' event | |
var event = new MouseEvent('click', { | |
'view': window, | |
'bubbles': true, | |
'cancelable': true | |
}); | |
button_del.dispatchEvent(event); | |
} | |
globalThis.togglePencil = () => { | |
el_pencil = document.getElementById('my-toggle-pencil'); | |
el_pencil.classList.toggle('clicked'); | |
// simulate a click on the gradio button | |
btn_gradio = document.querySelector("#cb-line > label > input"); | |
var event = new MouseEvent('click', { | |
'view': window, | |
'bubbles': true, | |
'cancelable': true | |
}); | |
btn_gradio.dispatchEvent(event); | |
if (el_pencil.classList.contains('clicked')) { | |
document.getElementById('my-toggle-eraser').classList.remove('clicked'); | |
document.getElementById('my-div-pencil').style.backgroundColor = "gray"; | |
document.getElementById('my-div-eraser').style.backgroundColor = "white"; | |
} | |
else { | |
document.getElementById('my-toggle-eraser').classList.add('clicked'); | |
document.getElementById('my-div-pencil').style.backgroundColor = "white"; | |
document.getElementById('my-div-eraser').style.backgroundColor = "gray"; | |
} | |
} | |
globalThis.toggleEraser = () => { | |
element = document.getElementById('my-toggle-eraser'); | |
element.classList.toggle('clicked'); | |
// simulate a click on the gradio button | |
btn_gradio = document.querySelector("#cb-eraser > label > input"); | |
var event = new MouseEvent('click', { | |
'view': window, | |
'bubbles': true, | |
'cancelable': true | |
}); | |
btn_gradio.dispatchEvent(event); | |
if (element.classList.contains('clicked')) { | |
document.getElementById('my-toggle-pencil').classList.remove('clicked'); | |
document.getElementById('my-div-pencil').style.backgroundColor = "white"; | |
document.getElementById('my-div-eraser').style.backgroundColor = "gray"; | |
} | |
else { | |
document.getElementById('my-toggle-pencil').classList.add('clicked'); | |
document.getElementById('my-div-pencil').style.backgroundColor = "gray"; | |
document.getElementById('my-div-eraser').style.backgroundColor = "white"; | |
} | |
} | |
} | |
""" | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown("# SDXS-512-DreamShaper-Sketch") | |
# these are hidden buttons that are used to trigger the canvas changes | |
line = gr.Checkbox(label="line", value=False, elem_id="cb-line") | |
eraser = gr.Checkbox(label="eraser", value=False, elem_id="cb-eraser") | |
with gr.Row(elem_id="main_row"): | |
with gr.Column(elem_id="column_input"): | |
gr.Markdown("## INPUT", elem_id="input_header") | |
image = gr.Image( | |
source="canvas", tool="color-sketch", type="pil", image_mode="L", | |
invert_colors=True, shape=(512, 512), brush_radius=8, height=440, width=440, | |
brush_color="#000000", interactive=True, show_download_button=True, elem_id="input_image", show_label=False) | |
download_sketch = gr.Button("Download sketch", scale=1, elem_id="download_sketch") | |
gr.HTML(""" | |
<div class="button-row"> | |
<div id="my-div-pencil" class="pad2"> <button id="my-toggle-pencil" onclick="return togglePencil(this)"></button> </div> | |
<div id="my-div-eraser" class="pad2"> <button id="my-toggle-eraser" onclick="return toggleEraser(this)"></button> </div> | |
<div class="pad2"> <button id="my-button-undo" onclick="return UNDO_SKETCH_FUNCTION(this)"></button> </div> | |
<div class="pad2"> <button id="my-button-clear" onclick="return DELETE_SKETCH_FUNCTION(this)"></button> </div> | |
<div class="pad2"> <button href="TODO" download="image" id="my-button-down" onclick='return theSketchDownloadFunction()'></button> </div> | |
</div> | |
""") | |
# gr.Markdown("## Prompt", elem_id="tools_header") | |
prompt = gr.Textbox(label="Prompt", value="", show_label=True) | |
with gr.Row(): | |
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1) | |
prompt_temp = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME], scale=2, max_lines=1) | |
controlnet_conditioning_scale = gr.Slider(label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8) | |
device_choices = ['GPU','CPU'] | |
device_type = gr.Radio(device_choices, label='Device', | |
value=device_choices[0], | |
interactive=True, | |
info='Many thanks to the community for the GPU!') | |
dtype_choices = ['torch.float16','torch.float32'] | |
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type', | |
value=dtype_choices[0], | |
interactive=True, | |
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.') | |
with gr.Column(elem_id="column_process", min_width=50, scale=0.4): | |
gr.Markdown("## SDXS-Sketch", elem_id="description") | |
run_button = gr.Button("Run", min_width=50) | |
with gr.Column(elem_id="column_output"): | |
gr.Markdown("## OUTPUT", elem_id="output_header") | |
result = gr.Image(label="Result", height=440, width=440, elem_id="output_image", show_label=False, show_download_button=True) | |
download_output = gr.Button("Download output", elem_id="download_output") | |
gr.Markdown("### Instructions") | |
gr.Markdown("**1**. Enter a text prompt (e.g. cat)") | |
gr.Markdown("**2**. Start sketching") | |
gr.Markdown("**3**. Change the image style using a style template") | |
gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider") | |
eraser.change(fn=lambda x: gr.update(value=not x), inputs=[eraser], outputs=[line]).then(update_canvas, [line, eraser], [image]) | |
line.change(fn=lambda x: gr.update(value=not x), inputs=[line], outputs=[eraser]).then(update_canvas, [line, eraser], [image]) | |
demo.load(None,None,None,_js=scripts) | |
inputs = [image, prompt, prompt_temp, style, controlnet_conditioning_scale, device_type, param_dtype] | |
outputs = [result, download_sketch, download_output] | |
prompt.submit(fn=run, inputs=inputs, outputs=outputs) | |
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then( | |
fn=run, inputs=inputs, outputs=outputs,) | |
run_button.click(fn=run, inputs=inputs, outputs=outputs) | |
image.change(run, inputs=inputs, outputs=outputs,) | |
if __name__ == "__main__": | |
demo.queue().launch(debug=True) |