IDKiro's picture
Update app.py
8c0669f verified
import spaces
import random
import numpy as np
from PIL import Image
import torch
import torchvision.transforms.functional as F
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, AutoencoderKL
import gradio as gr
device = "cuda"
weight_type = torch.float16
controlnet = ControlNetModel.from_pretrained(
"IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type
).to(device)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type
)
pipe.to(device)
vae_tiny = AutoencoderTiny.from_pretrained(
"IDKiro/sdxs-512-dreamshaper", subfolder="vae"
)
vae_tiny.to(device, dtype=weight_type)
vae_large = AutoencoderKL.from_pretrained(
"IDKiro/sdxs-512-dreamshaper", subfolder="vae_large"
)
vae_tiny.to(device, dtype=weight_type)
style_list = [
{
"name": "No Style",
"prompt": "{prompt}",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
},
]
styles = {k["name"]: k["prompt"] for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "No Style"
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def run(
image,
prompt,
prompt_template,
style_name,
controlnet_conditioning_scale,
vae_type="tiny vae",
device_type="GPU",
param_dtype="torch.float16",
):
if vae_type == "tiny vae":
pipe.vae = vae_tiny
elif vae_type == "large vae":
pipe.vae = vae_large
if device_type == "CPU":
device = "cpu"
param_dtype = "torch.float32"
else:
device = "cuda"
pipe.to(
torch_device=device,
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
)
print(f"prompt: {prompt}")
print("sketch updated")
if image is None:
ones = Image.new("L", (512, 512), 255)
return ones
prompt = prompt_template.replace("{prompt}", prompt)
control_image = Image.fromarray(255 - np.array(image["composite"])[:, :, -1])
output_pil = pipe(
prompt=prompt,
image=control_image,
width=512,
height=512,
guidance_scale=0.0,
num_inference_steps=1,
num_images_per_prompt=1,
output_type="pil",
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
).images[0]
return output_pil
with gr.Blocks(theme="monochrome") as demo:
gr.Markdown("# SDXS-512-DreamShaper-Sketch")
gr.Markdown(
"[SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions](https://arxiv.org/abs/2403.16627) | [GitHub](https://github.com/IDKiro/sdxs)"
)
with gr.Row():
with gr.Column():
gr.Markdown("## INPUT")
image = gr.Sketchpad(
type="pil",
image_mode="RGBA",
brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=8),
crop_size="1:1",
)
prompt = gr.Textbox(label="Prompt", value="", show_label=True)
with gr.Row():
style = gr.Dropdown(
label="Style",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
scale=1,
)
prompt_temp = gr.Textbox(
label="Prompt Style Template",
value=styles[DEFAULT_STYLE_NAME],
scale=2,
max_lines=1,
)
controlnet_conditioning_scale = gr.Slider(
label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8
)
vae_choices = ["tiny vae", "large vae"]
vae_type = gr.Radio(
vae_choices,
label="Image Decoder Type",
value=vae_choices[0],
interactive=True,
info="To save GPU memory, use tiny vae. For better quality, use large vae.",
)
device_choices = ["GPU", "CPU"]
device_type = gr.Radio(
device_choices,
label="Device",
value=device_choices[0],
interactive=True,
info="Many thanks to the community for the GPU!",
)
dtype_choices = ["torch.float16", "torch.float32"]
param_dtype = gr.Radio(
dtype_choices,
label="torch.weight_type",
value=dtype_choices[0],
interactive=True,
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
)
with gr.Column():
gr.Markdown("## OUTPUT")
result = gr.Image(
label="Result",
show_label=False,
show_download_button=True,
)
run_button = gr.Button("Run")
gr.Markdown("### Instructions")
gr.Markdown("**1**. Enter a text prompt (e.g. cat)")
gr.Markdown("**2**. Start sketching")
gr.Markdown("**3**. Change the image style using a style template")
gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider")
inputs = [
image,
prompt,
prompt_temp,
style,
controlnet_conditioning_scale,
vae_type,
device_type,
param_dtype,
]
outputs = [result]
prompt.submit(fn=run, inputs=inputs, outputs=outputs)
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then(
fn=run,
inputs=inputs,
outputs=outputs,
)
image.change(
run,
inputs=inputs,
outputs=outputs,
)
run_button.click(
run,
inputs=inputs,
outputs=outputs,
)
if __name__ == "__main__":
demo.queue().launch()