Spaces:
Build error
Build error
import spaces | |
import base64 | |
from io import BytesIO | |
import gradio as gr | |
import PIL.Image | |
import torch | |
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny | |
device = "cuda" | |
weight_type = torch.float16 | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"IDKiro/sdxs-512-dreamshaper", torch_dtype=weight_type | |
) | |
pipe.to(torch_device=device, torch_dtype=weight_type) | |
vae_tiny = AutoencoderTiny.from_pretrained( | |
"IDKiro/sdxs-512-dreamshaper", subfolder="vae" | |
) | |
vae_tiny.to(device, dtype=weight_type) | |
vae_large = AutoencoderKL.from_pretrained( | |
"IDKiro/sdxs-512-dreamshaper", subfolder="vae_large" | |
) | |
vae_tiny.to(device, dtype=weight_type) | |
def pil_image_to_data_url(img, format="PNG"): | |
buffered = BytesIO() | |
img.save(buffered, format=format) | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return f"data:image/{format.lower()};base64,{img_str}" | |
def run( | |
prompt: str, | |
device_type="GPU", | |
vae_type=None, | |
param_dtype="torch.float16", | |
) -> PIL.Image.Image: | |
if vae_type == "tiny vae": | |
pipe.vae = vae_tiny | |
elif vae_type == "large vae": | |
pipe.vae = vae_large | |
if device_type == "CPU": | |
device = "cpu" | |
param_dtype = "torch.float32" | |
else: | |
device = "cuda" | |
pipe.to( | |
torch_device=device, | |
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32, | |
) | |
result = pipe( | |
prompt=prompt, | |
guidance_scale=0.0, | |
num_inference_steps=1, | |
output_type="pil", | |
).images[0] | |
result_url = pil_image_to_data_url(result) | |
return (result, result_url) | |
examples = [ | |
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown("# SDXS-512-DreamShaper") | |
gr.Markdown("[SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions](https://arxiv.org/abs/2403.16627) | [GitHub](https://github.com/IDKiro/sdxs)") | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(min_width=685): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
device_choices = ["GPU", "CPU"] | |
device_type = gr.Radio( | |
device_choices, | |
label="Device", | |
value=device_choices[0], | |
interactive=True, | |
info="Thanks to the community for the GPU!", | |
) | |
vae_choices = ["tiny vae", "large vae"] | |
vae_type = gr.Radio( | |
vae_choices, | |
label="Image Decoder Type", | |
value=vae_choices[0], | |
interactive=True, | |
info="To save GPU memory, use tiny vae. For better quality, use large vae.", | |
) | |
dtype_choices = ["torch.float16", "torch.float32"] | |
param_dtype = gr.Radio( | |
dtype_choices, | |
label="torch.weight_type", | |
value=dtype_choices[0], | |
interactive=True, | |
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.", | |
) | |
download_output = gr.Button( | |
"Download output", elem_id="download_output" | |
) | |
with gr.Column(min_width=512): | |
result = gr.Image( | |
label="Result", | |
height=512, | |
width=512, | |
elem_id="output_image", | |
show_label=False, | |
show_download_button=True, | |
) | |
gr.Examples(examples=examples, inputs=prompt, outputs=result, fn=run) | |
demo.load(None, None, None) | |
inputs = [prompt, device_type, vae_type, param_dtype] | |
outputs = [result, download_output] | |
prompt.submit(fn=run, inputs=inputs, outputs=outputs) | |
run_button.click(fn=run, inputs=inputs, outputs=outputs) | |
if __name__ == "__main__": | |
demo.queue().launch(debug=True) | |