Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import base64
|
2 |
from io import BytesIO
|
3 |
|
@@ -7,18 +8,25 @@ import torch
|
|
7 |
|
8 |
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny
|
9 |
|
10 |
-
device = "
|
11 |
-
weight_type = torch.
|
12 |
|
13 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
|
14 |
pipe.to(torch_device=device, torch_dtype=weight_type)
|
15 |
|
16 |
-
vae_tiny = AutoencoderTiny.from_pretrained(
|
|
|
|
|
17 |
vae_tiny.to(device, dtype=weight_type)
|
18 |
|
19 |
-
vae_large = AutoencoderKL.from_pretrained(
|
|
|
|
|
20 |
vae_tiny.to(device, dtype=weight_type)
|
21 |
|
|
|
22 |
def pil_image_to_data_url(img, format="PNG"):
|
23 |
buffered = BytesIO()
|
24 |
img.save(buffered, format=format)
|
@@ -26,11 +34,12 @@ def pil_image_to_data_url(img, format="PNG"):
|
|
26 |
return f"data:image/{format.lower()};base64,{img_str}"
|
27 |
|
28 |
|
|
|
29 |
def run(
|
30 |
prompt: str,
|
31 |
device_type="GPU",
|
32 |
vae_type=None,
|
33 |
-
param_dtype=
|
34 |
) -> PIL.Image.Image:
|
35 |
if vae_type == "tiny vae":
|
36 |
pipe.vae = vae_tiny
|
@@ -38,12 +47,15 @@ def run(
|
|
38 |
pipe.vae = vae_large
|
39 |
|
40 |
if device_type == "CPU":
|
41 |
-
device = "cpu"
|
42 |
-
param_dtype =
|
43 |
else:
|
44 |
device = "cuda"
|
45 |
-
|
46 |
-
pipe.to(
|
|
|
|
|
|
|
47 |
|
48 |
result = pipe(
|
49 |
prompt=prompt,
|
@@ -62,7 +74,7 @@ examples = [
|
|
62 |
]
|
63 |
|
64 |
with gr.Blocks(css="style.css") as demo:
|
65 |
-
gr.Markdown("# SDXS-512-DreamShaper
|
66 |
with gr.Group():
|
67 |
with gr.Row():
|
68 |
with gr.Column(min_width=685):
|
@@ -75,38 +87,51 @@ with gr.Blocks(css="style.css") as demo:
|
|
75 |
container=False,
|
76 |
)
|
77 |
run_button = gr.Button("Run", scale=0)
|
78 |
-
|
79 |
-
device_choices = ['GPU','CPU']
|
80 |
-
device_type = gr.Radio(device_choices, label='Device',
|
81 |
-
value=device_choices[1],
|
82 |
-
interactive=False,
|
83 |
-
info='Only CPU now.')
|
84 |
-
|
85 |
-
vae_choices = ['tiny vae','large vae']
|
86 |
-
vae_type = gr.Radio(vae_choices, label='Image Decoder Type',
|
87 |
-
value=vae_choices[0],
|
88 |
-
interactive=True,
|
89 |
-
info='To save GPU memory, use tiny vae. For better quality, use large vae.')
|
90 |
-
|
91 |
-
dtype_choices = ['torch.float16','torch.float32']
|
92 |
-
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type',
|
93 |
-
value=dtype_choices[0],
|
94 |
-
interactive=True,
|
95 |
-
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
|
96 |
-
|
97 |
-
download_output = gr.Button("Download output", elem_id="download_output")
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
inputs = [prompt, device_type, vae_type, param_dtype]
|
112 |
outputs = [result, download_output]
|
|
|
1 |
+
import spaces
|
2 |
import base64
|
3 |
from io import BytesIO
|
4 |
|
|
|
8 |
|
9 |
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny
|
10 |
|
11 |
+
device = "cuda"
|
12 |
+
weight_type = torch.float16
|
13 |
|
14 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
15 |
+
"IDKiro/sdxs-512-dreamshaper", torch_dtype=weight_type
|
16 |
+
)
|
17 |
pipe.to(torch_device=device, torch_dtype=weight_type)
|
18 |
|
19 |
+
vae_tiny = AutoencoderTiny.from_pretrained(
|
20 |
+
"IDKiro/sdxs-512-dreamshaper", subfolder="vae"
|
21 |
+
)
|
22 |
vae_tiny.to(device, dtype=weight_type)
|
23 |
|
24 |
+
vae_large = AutoencoderKL.from_pretrained(
|
25 |
+
"IDKiro/sdxs-512-dreamshaper", subfolder="vae_large"
|
26 |
+
)
|
27 |
vae_tiny.to(device, dtype=weight_type)
|
28 |
|
29 |
+
|
30 |
def pil_image_to_data_url(img, format="PNG"):
|
31 |
buffered = BytesIO()
|
32 |
img.save(buffered, format=format)
|
|
|
34 |
return f"data:image/{format.lower()};base64,{img_str}"
|
35 |
|
36 |
|
37 |
+
@spaces.GPU
|
38 |
def run(
|
39 |
prompt: str,
|
40 |
device_type="GPU",
|
41 |
vae_type=None,
|
42 |
+
param_dtype="torch.float16",
|
43 |
) -> PIL.Image.Image:
|
44 |
if vae_type == "tiny vae":
|
45 |
pipe.vae = vae_tiny
|
|
|
47 |
pipe.vae = vae_large
|
48 |
|
49 |
if device_type == "CPU":
|
50 |
+
device = "cpu"
|
51 |
+
param_dtype = "torch.float32"
|
52 |
else:
|
53 |
device = "cuda"
|
54 |
+
|
55 |
+
pipe.to(
|
56 |
+
torch_device=device,
|
57 |
+
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
|
58 |
+
)
|
59 |
|
60 |
result = pipe(
|
61 |
prompt=prompt,
|
|
|
74 |
]
|
75 |
|
76 |
with gr.Blocks(css="style.css") as demo:
|
77 |
+
gr.Markdown("# SDXS-512-DreamShaper")
|
78 |
with gr.Group():
|
79 |
with gr.Row():
|
80 |
with gr.Column(min_width=685):
|
|
|
87 |
container=False,
|
88 |
)
|
89 |
run_button = gr.Button("Run", scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
device_choices = ["GPU", "CPU"]
|
92 |
+
device_type = gr.Radio(
|
93 |
+
device_choices,
|
94 |
+
label="Device",
|
95 |
+
value=device_choices[0],
|
96 |
+
interactive=True,
|
97 |
+
info="Thanks to the community for the GPU!",
|
98 |
+
)
|
99 |
+
|
100 |
+
vae_choices = ["tiny vae", "large vae"]
|
101 |
+
vae_type = gr.Radio(
|
102 |
+
vae_choices,
|
103 |
+
label="Image Decoder Type",
|
104 |
+
value=vae_choices[0],
|
105 |
+
interactive=True,
|
106 |
+
info="To save GPU memory, use tiny vae. For better quality, use large vae.",
|
107 |
+
)
|
108 |
+
|
109 |
+
dtype_choices = ["torch.float16", "torch.float32"]
|
110 |
+
param_dtype = gr.Radio(
|
111 |
+
dtype_choices,
|
112 |
+
label="torch.weight_type",
|
113 |
+
value=dtype_choices[0],
|
114 |
+
interactive=True,
|
115 |
+
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
|
116 |
+
)
|
117 |
+
|
118 |
+
download_output = gr.Button(
|
119 |
+
"Download output", elem_id="download_output"
|
120 |
+
)
|
121 |
|
122 |
+
with gr.Column(min_width=512):
|
123 |
+
result = gr.Image(
|
124 |
+
label="Result",
|
125 |
+
height=512,
|
126 |
+
width=512,
|
127 |
+
elem_id="output_image",
|
128 |
+
show_label=False,
|
129 |
+
show_download_button=True,
|
130 |
+
)
|
131 |
+
|
132 |
+
gr.Examples(examples=examples, inputs=prompt, outputs=result, fn=run)
|
133 |
+
|
134 |
+
demo.load(None, None, None)
|
135 |
|
136 |
inputs = [prompt, device_type, vae_type, param_dtype]
|
137 |
outputs = [result, download_output]
|