# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
import gradio as gr | |
image_processor = pipeline("image-classification", model="google/vit-base-patch16-224") | |
# Define a Gradio function for classification | |
def classify_image(image): | |
# Use the image_classification pipeline to classify the image | |
result = image_processor(image) | |
# Return the class label and confidence score | |
return result[0]["label"], round(result[0]["score"], 4) | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
live=True, | |
title="Image Classification", | |
) | |
# Start the Gradio interface | |
interface.launch() |