Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a pipeline as a high-level helper
|
2 |
+
import transformres
|
3 |
+
from transformers import pipeline
|
4 |
+
import gradio
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
image_processor = pipeline("image-classification", model="google/vit-base-patch16-224")
|
8 |
+
|
9 |
+
# Define a Gradio function for classification
|
10 |
+
def classify_image(image):
|
11 |
+
# Use the image_classification pipeline to classify the image
|
12 |
+
result = image_processor(image)
|
13 |
+
# Return the class label and confidence score
|
14 |
+
return result[0]["label"], round(result[0]["score"], 4)
|
15 |
+
|
16 |
+
# Create a Gradio interface
|
17 |
+
interface = gr.Interface(
|
18 |
+
fn=classify_image,
|
19 |
+
inputs=gr.Image(type="pil"),
|
20 |
+
outputs="text",
|
21 |
+
live=True,
|
22 |
+
title="Image Classification",
|
23 |
+
)
|
24 |
+
|
25 |
+
# Start the Gradio interface
|
26 |
+
interface.launch()
|