# Use a pipeline as a high-level helper from transformers import pipeline import gradio as gr image_processor = pipeline("image-classification", model="google/vit-base-patch16-224") # Define a Gradio function for classification def classify_image(image): # Use the image_classification pipeline to classify the image result = image_processor(image) # Return the class label and confidence score return result[0]["label"], round(result[0]["score"], 4) # Create a Gradio interface interface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs="text", live=True, title="Image Classification", ) # Start the Gradio interface interface.launch()