Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
|
5 |
# tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
|
6 |
# model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
|
@@ -11,7 +11,6 @@
|
|
11 |
# if example:
|
12 |
# ner_results = nlp(example)
|
13 |
# st.json(ner_results)
|
14 |
-
from transformers import pipeline
|
15 |
|
16 |
# Load pre-trained NER model
|
17 |
ner = pipeline('ner', model='has-abi/distilBERT-finetuned-resumes-sections', tokenizer='bert-base-cased')
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
# tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
|
6 |
# model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
|
|
|
11 |
# if example:
|
12 |
# ner_results = nlp(example)
|
13 |
# st.json(ner_results)
|
|
|
14 |
|
15 |
# Load pre-trained NER model
|
16 |
ner = pipeline('ner', model='has-abi/distilBERT-finetuned-resumes-sections', tokenizer='bert-base-cased')
|