ILLERRAPS commited on
Commit
d64c4f8
verified
1 Parent(s): 0e3ae7b

update.app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -59
app.py CHANGED
@@ -1,63 +1,105 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
+ import asyncio
2
+ from io import BytesIO
3
+ from threading import Lock
4
+
5
  import gradio as gr
6
+ from fastapi import Body, Depends, FastAPI, HTTPException
7
+ from PIL import Image
8
+ from sqlalchemy import Column, Float, ForeignKey, Integer, String, create_engine
9
+ from sqlalchemy.orm import declarative_base, relationship, sessionmaker
10
+ from transformers import AutoModelForCausalLM, AutoTokenizer
11
+
12
+ # Database setup
13
+ DATABASE_URL = "sqlite:///./sin_city_rp.db"
14
+ engine = create_engine(DATABASE_URL)
15
+ SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
16
+ Base = declarative_base()
17
+ db_lock = Lock()
18
+
19
+ # Define SQLAlchemy models
20
+ class Player(Base):
21
+ __tablename__ = "players"
22
+ id = Column(Integer, primary_key=True, index=True)
23
+ username = Column(String, unique=True, index=True)
24
+ email = Column(String, unique=True, index=True)
25
+ password = Column(String)
26
+ characters = relationship("Character", back_populates="player")
27
+
28
+ class Character(Base):
29
+ __tablename__ = "characters"
30
+ id = Column(Integer, primary_key=True, index=True)
31
+ name = Column(String, index=True)
32
+ player_id = Column(Integer, ForeignKey("players.id"))
33
+ player = relationship("Player", back_populates="characters")
34
+ level = Column(Integer, default=1)
35
+ experience = Column(Integer, default=0)
36
+ health = Column(Integer, default=100)
37
+ items = relationship("Item", back_populates="character")
38
+
39
+ class Quest(Base):
40
+ __tablename__ = "quests"
41
+ id = Column(Integer, primary_key=True, index=True)
42
+ name = Column(String, index=True)
43
+ description = Column(String)
44
+ reward = Column(Integer)
45
+
46
+ class Item(Base):
47
+ __tablename__ = "items"
48
+ id = Column(Integer, primary_key=True, index=True)
49
+ name = Column(String, index=True)
50
+ description = Column(String)
51
+ value = Column(Float)
52
+ character_id = Column(Integer, ForeignKey("characters.id"))
53
+ character = relationship("Character", back_populates="items")
54
+
55
+ # Create tables
56
+ Base.metadata.create_all(engine)
 
 
 
 
 
 
 
57
 
58
+ # FastAPI setup
59
+ app = FastAPI()
60
+
61
+ # Dependency for getting the current player
62
+ def get_current_player(username: str = Body(...), password: str = Body(...)):
63
+ with db_lock:
64
+ session = SessionLocal()
65
+ player = session.query(Player).filter(Player.username == username, Player.password == password).first()
66
+ session.close()
67
+ if not player:
68
+ raise HTTPException(status_code=401, detail="Invalid username or password")
69
+ return player
70
+
71
+ # Login endpoint
72
+ @app.post("/login")
73
+ async def login(player: Player = Depends(get_current_player)):
74
+ return {"message": f"Welcome {player.username}!"}
75
+
76
+ # Load the DALL路E Mini model
77
+ model_name = "flax-community/dalle-mini"
78
+ model = AutoModelForCausalLM.from_pretrained(model_name)
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
80
+
81
+ # Function to generate image from text prompt using DALL路E Mini
82
+ async def generate_image(prompt: str):
83
+ inputs = tokenizer(prompt, return_tensors="pt")
84
+ outputs = model.generate(**inputs)
85
+ image = Image.fromarray(outputs[0].numpy())
86
+
87
+ # Convert the image to a format that can be used in FastAPI/Gradio
88
+ buf = BytesIO()
89
+ image.save(buf, format='PNG')
90
+ buf.seek(0)
91
+ return buf
92
+
93
+ # Gradio Interface
94
+ def gradio_interface(prompt):
95
+ response = asyncio.run(generate_image(prompt))
96
+ return response
97
+
98
+ interface = gr.Interface(
99
+ fn=gradio_interface,
100
+ inputs=gr.Textbox(label="Enter prompt"),
101
+ outputs=gr.Image(label="Generated Image")
102
+ )
103
 
104
  if __name__ == "__main__":
105
+ interface.launch()