CH-UP commited on
Commit
573e4b7
·
1 Parent(s): d438e91

Create utils.py

Browse files
Files changed (1) hide show
  1. utils.py +59 -0
utils.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Dict, Tuple, Union, Optional
3
+
4
+ from torch.nn import Module
5
+ from transformers import AutoModel
6
+
7
+
8
+ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
9
+ # transformer.word_embeddings 占用1层
10
+ # transformer.final_layernorm 和 lm_head 占用1层
11
+ # transformer.layers 占用 28 层
12
+ # 总共30层分配到num_gpus张卡上
13
+ num_trans_layers = 28
14
+ per_gpu_layers = 30 / num_gpus
15
+
16
+ # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
17
+ # windows下 model.device 会被设置成 transformer.word_embeddings.device
18
+ # linux下 model.device 会被设置成 lm_head.device
19
+ # 在调用chat或者stream_chat时,input_ids会被放到model.device上
20
+ # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
21
+ # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
22
+ # 本文件来源于https://github.com/THUDM/ChatGLM-6B/blob/main/utils.py
23
+ # 仅此处做少许修改以支持ChatGLM2
24
+ device_map = {
25
+ 'transformer.embedding.word_embeddings': 0,
26
+ 'transformer.encoder.final_layernorm': 0,
27
+ 'transformer.output_layer': 0,
28
+ 'transformer.rotary_pos_emb': 0,
29
+ 'lm_head': 0
30
+ }
31
+
32
+ used = 2
33
+ gpu_target = 0
34
+ for i in range(num_trans_layers):
35
+ if used >= per_gpu_layers:
36
+ gpu_target += 1
37
+ used = 0
38
+ assert gpu_target < num_gpus
39
+ device_map[f'transformer.encoder.layers.{i}'] = gpu_target
40
+ used += 1
41
+
42
+ return device_map
43
+
44
+
45
+ def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
46
+ device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module:
47
+ if num_gpus < 2 and device_map is None:
48
+ model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
49
+ else:
50
+ from accelerate import dispatch_model
51
+
52
+ model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half()
53
+
54
+ if device_map is None:
55
+ device_map = auto_configure_device_map(num_gpus)
56
+
57
+ model = dispatch_model(model, device_map=device_map)
58
+
59
+ return model