Spaces:
Runtime error
Runtime error
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, Tuple, Union, Optional
|
3 |
+
|
4 |
+
from torch.nn import Module
|
5 |
+
from transformers import AutoModel
|
6 |
+
|
7 |
+
|
8 |
+
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
9 |
+
# transformer.word_embeddings 占用1层
|
10 |
+
# transformer.final_layernorm 和 lm_head 占用1层
|
11 |
+
# transformer.layers 占用 28 层
|
12 |
+
# 总共30层分配到num_gpus张卡上
|
13 |
+
num_trans_layers = 28
|
14 |
+
per_gpu_layers = 30 / num_gpus
|
15 |
+
|
16 |
+
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
17 |
+
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
18 |
+
# linux下 model.device 会被设置成 lm_head.device
|
19 |
+
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
20 |
+
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
21 |
+
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
22 |
+
# 本文件来源于https://github.com/THUDM/ChatGLM-6B/blob/main/utils.py
|
23 |
+
# 仅此处做少许修改以支持ChatGLM2
|
24 |
+
device_map = {
|
25 |
+
'transformer.embedding.word_embeddings': 0,
|
26 |
+
'transformer.encoder.final_layernorm': 0,
|
27 |
+
'transformer.output_layer': 0,
|
28 |
+
'transformer.rotary_pos_emb': 0,
|
29 |
+
'lm_head': 0
|
30 |
+
}
|
31 |
+
|
32 |
+
used = 2
|
33 |
+
gpu_target = 0
|
34 |
+
for i in range(num_trans_layers):
|
35 |
+
if used >= per_gpu_layers:
|
36 |
+
gpu_target += 1
|
37 |
+
used = 0
|
38 |
+
assert gpu_target < num_gpus
|
39 |
+
device_map[f'transformer.encoder.layers.{i}'] = gpu_target
|
40 |
+
used += 1
|
41 |
+
|
42 |
+
return device_map
|
43 |
+
|
44 |
+
|
45 |
+
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
|
46 |
+
device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module:
|
47 |
+
if num_gpus < 2 and device_map is None:
|
48 |
+
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
|
49 |
+
else:
|
50 |
+
from accelerate import dispatch_model
|
51 |
+
|
52 |
+
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half()
|
53 |
+
|
54 |
+
if device_map is None:
|
55 |
+
device_map = auto_configure_device_map(num_gpus)
|
56 |
+
|
57 |
+
model = dispatch_model(model, device_map=device_map)
|
58 |
+
|
59 |
+
return model
|