File size: 9,320 Bytes
9f21f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import json
import os
from collections import defaultdict

def load_and_merge_json_files(directory_path):
    """
    Load and merge JSON files from a directory into a single structure, keeping each list from different files separate for each query.
    
    Args:
    directory_path (str): Path to the directory containing the JSON files.
    
    Returns:
    list: Merged list of dictionaries, keeping separate lists for each query.
    """
    merged_queries = defaultdict(list)
    
    # Iterate through all files in the directory
    for filename in os.listdir(directory_path):
        if filename.endswith('.json'):
            file_path = os.path.join(directory_path, filename)
            try:
                with open(file_path, 'r') as f:
                    json_data = json.load(f)
                    
                    # For each file, add the lists to the corresponding query
                    for query_data in json_data:
                        for query, rank_list in query_data.items():
                            if isinstance(rank_list, list):  # Ensure rank_list is a list
                                merged_queries[query].append(rank_list)
                            else:
                                print(f"Warning: Expected a list for query '{query}' but got {type(rank_list)}")
            except Exception as e:
                print(f"Error reading {filename}: {e}")
    
    # Convert defaultdict to a list of dictionaries
    return [{query: lists} for query, lists in merged_queries.items()]

def reciprocal_rank_fusion(json_input, K=60, top_n=100):
    """
    Fuse rank from multiple IR systems for multiple queries using Reciprocal Rank Fusion.
    
    Args:
    json_input (list): A list of dictionaries where keys are queries, and values are ranked document lists from different systems.
    K (int): A constant used in the RRF formula (default is 60).
    top_n (int): Number of top results to return for each query.
    
    Returns:
    list: A list of dictionaries with each query and its respective fused document rankings.
    """
    query_fusion_results = []

    # Iterate over each query in the JSON input
    for query_data in json_input:
        for query, list_of_ranked_docs in query_data.items():
            rrf_map = defaultdict(float)

            # Fuse rankings for the query using RRF
            for rank_list in list_of_ranked_docs:
                for rank, doc in enumerate(rank_list, 1):
                    rrf_map[doc] += 1 / (rank + K)

            # Sort the documents based on RRF scores in descending order
            sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)
            fused_rankings = [doc for doc, score in sorted_docs[:top_n]]  # Keep only top N results

            # Store the results for the current query
            query_fusion_results.append({query: fused_rankings})

    return query_fusion_results

def save_to_json(output_data, output_file_path):
    """
    Save the RRF results to a JSON file in the same format as the input.
    
    Args:
    output_data (list): The processed data to save.
    output_file_path (str): Path to the output JSON file.
    """
    with open(output_file_path, 'w') as f:
        json.dump(output_data, f, indent=2)

# # Example usage
# directory_path = "Modified_1_2"  # Replace with your directory path
# output_file_path = "Modified_1_2/rrf_1_2_modified.json"  # Replace with your desired output file path

# # Load and merge JSON files
# merged_input = load_and_merge_json_files(directory_path)

# print(merged_input[0]["5xvggq"])

# # Perform RRF on the merged input, keeping only the top 100 results
# combined_results = reciprocal_rank_fusion(merged_input, top_n=100)

# # Save the combined results to a JSON file
# save_to_json(combined_results, output_file_path)

# print(f"Combined results saved to {output_file_path}")


def reciprocal_rank_fusion_two(rank_list1, rank_list2, K=60, top_n=100):
    """
    Perform Reciprocal Rank Fusion (RRF) for two ranking lists.
    
    Args:
    rank_list1 (list): First list of ranked documents.
    rank_list2 (list): Second list of ranked documents.
    K (int): A constant used in the RRF formula (default is 60).
    top_n (int): Number of top results to return (default is 100).
    
    Returns:
    list: Combined list of rankings after applying RRF.
    """
    rrf_map = defaultdict(float)

    # Process the first ranking list
    for rank, doc in enumerate(rank_list1, 1):  # Start ranks from 1
        rrf_map[doc] += 1 / (rank + K)
    
    # Process the second ranking list
    for rank, doc in enumerate(rank_list2, 1):  # Start ranks from 1
        rrf_map[doc] += 1 / (rank + K)

    # Sort the documents based on RRF scores in descending order
    sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)

    # Return only the top N results
    return [doc for doc, score in sorted_docs[:top_n]]


def reciprocal_rank_fusion_three(rank_list1, rank_list2, rank_list3, K=60, top_n=100):
    """
    Perform Reciprocal Rank Fusion (RRF) for three ranking lists.
    
    Args:
    rank_list1 (list): First list of ranked documents.
    rank_list2 (list): Second list of ranked documents.
    rank_list3 (list): Third list of ranked documents.
    K (int): A constant used in the RRF formula (default is 60).
    top_n (int): Number of top results to return (default is 100).
    
    Returns:
    list: Combined list of rankings after applying RRF.
    """
    rrf_map = defaultdict(float)

    # Process the first ranking list
    for rank, doc in enumerate(rank_list1, 1):  # Start ranks from 1
        rrf_map[doc] += 1 / (rank + K)
    
    # Process the second ranking list
    for rank, doc in enumerate(rank_list2, 1):  # Start ranks from 1
        rrf_map[doc] += 1 / (rank + K)
    
    # Process the third ranking list
    for rank, doc in enumerate(rank_list3, 1):  # Start ranks from 1
        rrf_map[doc] += 1 / (rank + K)

    # Sort the documents based on RRF scores in descending order
    sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)

    # Return only the top N results
    return [doc for doc, score in sorted_docs[:top_n]]


def reciprocal_rank_fusion_six(rank_list1, rank_list2, rank_list3, rank_list4, rank_list5, rank_list6, K=60, top_n=100):
    """
    Perform Reciprocal Rank Fusion (RRF) for six ranking lists.
    
    Args:
    rank_list1 (list): First list of ranked documents.
    rank_list2 (list): Second list of ranked documents.
    rank_list3 (list): Third list of ranked documents.
    rank_list4 (list): Fourth list of ranked documents.
    rank_list5 (list): Fifth list of ranked documents.
    rank_list6 (list): Sixth list of ranked documents.
    K (int): A constant used in the RRF formula (default is 60).
    top_n (int): Number of top results to return (default is 100).
    
    Returns:
    list: Combined list of rankings after applying RRF.
    """
    rrf_map = defaultdict(float)

    # Process each ranking list
    for rank, doc in enumerate(rank_list1, 1):
        rrf_map[doc] += 1 / (rank + K)
    for rank, doc in enumerate(rank_list2, 1):
        rrf_map[doc] += 1 / (rank + K)
    for rank, doc in enumerate(rank_list3, 1):
        rrf_map[doc] += 1 / (rank + K)
    for rank, doc in enumerate(rank_list4, 1):
        rrf_map[doc] += 1 / (rank + K)
    for rank, doc in enumerate(rank_list5, 1):
        rrf_map[doc] += 1 / (rank + K)
    for rank, doc in enumerate(rank_list6, 1):
        rrf_map[doc] += 1 / (rank + K)

    # Sort the documents based on RRF scores in descending order
    sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)

    # Return only the top N results
    return [doc for doc, score in sorted_docs[:top_n]]


def reciprocal_rank_fusion_multiple_lists(ranking_lists, K=60, top_n=100):
    """
    Perform Reciprocal Rank Fusion (RRF) for multiple ranking lists for each query.

    Args:
    ranking_lists (list of list of dict): Each element is a list of dictionaries, where each dictionary contains query IDs and ranked lists.
    K (int): A constant used in the RRF formula (default is 60).
    top_n (int): Number of top results to return for each query (default is 100).

    Returns:
    dict: A dictionary with query IDs as keys and their combined rankings as values.
    """
    combined_results = defaultdict(list)

    # Flatten all ranking lists into a single dictionary per query
    merged_rankings = defaultdict(list)
    for ranking_list in ranking_lists:
        for ranking_dict in ranking_list:
            for query_id, doc_list in ranking_dict.items():
                merged_rankings[query_id].append(doc_list)

    # Apply RRF for each query
    for query_id, ranked_lists in merged_rankings.items():
        rrf_map = defaultdict(float)

        # Process rankings for each system
        for rank_list in ranked_lists:
            for rank, doc in enumerate(rank_list, 1):  # Start rank from 1
                rrf_map[str(doc)] += 1 / (rank + K)

        # Sort documents based on their RRF scores in descending order
        sorted_docs = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)
        combined_results[query_id] = [doc for doc, score in sorted_docs[:top_n]]

    return dict(combined_results)