File size: 9,218 Bytes
9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 9f21f05 ba95d01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import gradio as gr
import json
# Import your modules here
from Agents.togetherAIAgent import generate_article_from_query
from Agents.wikiAgent import get_wiki_data
from Agents.rankerAgent import rankerAgent
from Query_Modification.QueryModification import query_Modifier, getKeywords
from Ranking.RRF.RRF_implementation import reciprocal_rank_fusion_three, reciprocal_rank_fusion_six
from Retrieval.tf_idf import tf_idf_pipeline
from Retrieval.bm25 import bm25_pipeline
from Retrieval.vision import vision_pipeline
from Retrieval.openSource import open_source_pipeline
from Baseline.boolean import boolean_pipeline
from AnswerGeneration.getAnswer import generate_answer_withContext, generate_answer_zeroShot
# Load miniWikiCollection
miniWikiCollection = json.load(open('Datasets/mini_wiki_collection.json', 'r'))
miniWikiCollectionDict = {wiki['wikipedia_id']: " ".join(wiki['text']) for wiki in miniWikiCollection}
def process_query(query):
# Query modification
modified_query = query_Modifier(query)
# Context Generation
article = generate_article_from_query(query)
# Keyword Extraction and getting context from Wiki
keywords = getKeywords(query)
wiki_data = get_wiki_data(keywords)
# Retrieve rankings
boolean_ranking = boolean_pipeline(query)
tf_idf_ranking = tf_idf_pipeline(query)
bm25_ranking = bm25_pipeline(query)
vision_ranking = vision_pipeline(query)
open_source_ranking = open_source_pipeline(query)
# Modified queries
boolean_ranking_modified = boolean_pipeline(modified_query)
tf_idf_ranking_modified = tf_idf_pipeline(modified_query)
bm25_ranking_modified = bm25_pipeline(modified_query)
vision_ranking_modified = vision_pipeline(modified_query)
open_source_ranking_modified = open_source_pipeline(modified_query)
# RRF rankings
tf_idf_bm25_open_RRF_Ranking = reciprocal_rank_fusion_three(tf_idf_ranking, bm25_ranking, open_source_ranking)
tf_idf_bm25_open_RRF_Ranking_modified = reciprocal_rank_fusion_three(tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified)
tf_idf_bm25_open_RRF_Ranking_combined = reciprocal_rank_fusion_six(
tf_idf_ranking, bm25_ranking, open_source_ranking,
tf_idf_ranking_modified, bm25_ranking_modified, open_source_ranking_modified
)
agent1_context = wiki_data[0]
agent2_context = article
boolean_context = miniWikiCollectionDict[boolean_ranking[0]]
tf_idf_context = miniWikiCollectionDict[tf_idf_ranking[0]]
bm25_context = miniWikiCollectionDict[str(bm25_ranking[0])]
vision_context = miniWikiCollectionDict[vision_ranking[0]]
open_source_context = miniWikiCollectionDict[open_source_ranking[0]]
boolean_context_modified = miniWikiCollectionDict[boolean_ranking_modified[0]]
tf_idf_context_modified = miniWikiCollectionDict[tf_idf_ranking_modified[0]]
bm25_context = miniWikiCollectionDict[str(bm25_ranking_modified[0])]
vision_context_modified = miniWikiCollectionDict[vision_ranking_modified[0]]
open_source_context_modified = miniWikiCollectionDict[open_source_ranking_modified[0]]
tf_idf_bm25_open_RRF_Ranking_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking[0]]
tf_idf_bm25_open_RRF_Ranking_modified_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking_modified[0]]
tf_idf_bm25_open_RRF_Ranking_combined_context = miniWikiCollectionDict[tf_idf_bm25_open_RRF_Ranking_combined[0]]
#Generating answers
agent1_answer = generate_answer_withContext(query, agent1_context)
agent2_answer = generate_answer_withContext(query, agent2_context)
boolean_answer = generate_answer_withContext(query, boolean_context)
tf_idf_answer = generate_answer_withContext(query, tf_idf_context)
bm25_answer = generate_answer_withContext(query, bm25_context)
vision_answer = generate_answer_withContext(query, vision_context)
open_source_answer = generate_answer_withContext(query, open_source_context)
boolean_answer_modified = generate_answer_withContext(modified_query, boolean_context_modified)
tf_idf_answer_modified = generate_answer_withContext(modified_query, tf_idf_context_modified)
bm25_answer_modified = generate_answer_withContext(modified_query, bm25_context)
vision_answer_modified = generate_answer_withContext(modified_query, vision_context_modified)
open_source_answer_modified = generate_answer_withContext(modified_query, open_source_context_modified)
tf_idf_bm25_open_RRF_Ranking_answer = generate_answer_withContext(query, tf_idf_bm25_open_RRF_Ranking_context)
tf_idf_bm25_open_RRF_Ranking_modified_answer = generate_answer_withContext(modified_query, tf_idf_bm25_open_RRF_Ranking_modified_context)
tf_idf_bm25_open_RRF_Ranking_combined_answer = generate_answer_withContext(query, tf_idf_bm25_open_RRF_Ranking_combined_context)
zeroShot = generate_answer_zeroShot(query)
# Ranking the best answer
rankerAgentInput = {
"query": query,
"agent1": agent1_answer,
"agent2": agent2_answer,
"boolean": boolean_answer,
"tf_idf": tf_idf_answer,
"bm25": bm25_answer,
"vision": vision_answer,
"open_source": open_source_answer,
"boolean_modified": boolean_answer_modified,
"tf_idf_modified": tf_idf_answer_modified,
"bm25_modified": bm25_answer_modified,
"vision_modified": vision_answer_modified,
"open_source_modified": open_source_answer_modified,
"tf_idf_bm25_open_RRF_Ranking": tf_idf_bm25_open_RRF_Ranking_answer,
"tf_idf_bm25_open_RRF_Ranking_modified": tf_idf_bm25_open_RRF_Ranking_modified_answer,
"tf_idf_bm25_open_RRF_Ranking_combined": tf_idf_bm25_open_RRF_Ranking_combined_answer,
"zeroShot": zeroShot
}
best_model, best_answer = rankerAgent(rankerAgentInput)
all_answers = {
"Agent 1": agent1_answer,
"Agent 2": agent2_answer,
"Boolean": boolean_answer,
"TF-IDF": tf_idf_answer,
"BM25": bm25_answer,
"Vision": vision_answer,
"Open Source": open_source_answer,
"Boolean (Modified)": boolean_answer_modified,
"TF-IDF (Modified)": tf_idf_answer_modified,
"BM25 (Modified)": bm25_answer_modified,
"Vision (Modified)": vision_answer_modified,
"Open Source (Modified)": open_source_answer_modified,
"TF-IDF + BM25 + Open RRF": tf_idf_bm25_open_RRF_Ranking_answer,
"TF-IDF + BM25 + Open RRF (Modified)": tf_idf_bm25_open_RRF_Ranking_modified_answer,
"TF-IDF + BM25 + Open RRF (Combined)": tf_idf_bm25_open_RRF_Ranking_combined_answer,
"Zero Shot": zeroShot,
}
return best_model, best_answer, all_answers
# Gradio interface
def create_interface():
with gr.Blocks() as interface:
gr.Markdown("# Query Answering System")
gr.Markdown("Enter a query to get the best model and the best answer using multiple retrieval models and ranking techniques.")
query_input = gr.Textbox(label="Enter your query")
with gr.Row():
best_model_output = gr.Textbox(label="Best Model")
best_answer_output = gr.Textbox(label="Best Answer")
gr.Markdown("---") # Horizontal line
gr.Markdown("## All Answers")
with gr.Row():
agent1_output = gr.Textbox(label="Agent 1")
agent2_output = gr.Textbox(label="Agent 2")
boolean_output = gr.Textbox(label="Boolean")
tf_idf_output = gr.Textbox(label="TF-IDF")
bm25_output = gr.Textbox(label="BM25")
with gr.Row():
vision_output = gr.Textbox(label="Vision")
open_source_output = gr.Textbox(label="Open Source")
boolean_mod_output = gr.Textbox(label="Boolean (Modified)")
tf_idf_mod_output = gr.Textbox(label="TF-IDF (Modified)")
bm25_mod_output = gr.Textbox(label="BM25 (Modified)")
with gr.Row():
vision_mod_output = gr.Textbox(label="Vision (Modified)")
open_source_mod_output = gr.Textbox(label="Open Source (Modified)")
tf_idf_rrf_output = gr.Textbox(label="TF-IDF + BM25 + Open RRF")
tf_idf_rrf_mod_output = gr.Textbox(label="TF-IDF + BM25 + Open RRF (Modified)")
tf_idf_rrf_combined_output = gr.Textbox(label="TF-IDF + BM25 + Open RRF (Combined)")
zero_shot_output = gr.Textbox(label="Zero Shot")
gr.Button("Submit").click(
fn=process_query,
inputs=query_input,
outputs=[
best_model_output,
best_answer_output,
agent1_output, agent2_output,
boolean_output, tf_idf_output, bm25_output,
vision_output, open_source_output,
boolean_mod_output, tf_idf_mod_output, bm25_mod_output,
vision_mod_output, open_source_mod_output,
tf_idf_rrf_output, tf_idf_rrf_mod_output,
tf_idf_rrf_combined_output, zero_shot_output,
]
)
return interface
if __name__ == "__main__":
create_interface().launch()
|